
Limits of Learning-based Signature Generation with Adversaries

Shobha Venkataraman
Carnegie Mellon University

shobha@cs.cmu.edu

Avrim Blum
Carnegie Mellon University

avrim@cs.cmu.edu

Dawn Song
University of California, Berkeley

dawnsong@cs.berkeley.edu

Abstract

Automatic signature generation is necessary because
there may often be little time between the discovery of a
vulnerability, and exploits developed to target the vulner-
ability. Much research effort has focused on pattern-
extraction techniques to generate signatures. These have
included techniques that look for a single large invariant
substring of the byte sequences, as well as techniques that
look for many short invariant substrings. Pattern-extraction
techniques are attractive because signatures can be gener-
ated and matched efficiently, and earlier work has shown
the existence of invariants in exploits.
In this paper, we show fundamental limits on the

accuracy of pattern-extraction algorithms for signature-
generation in an adversarial setting. We formulate a frame-
work that allows a unified analysis of these algorithms, and
prove lower bounds on the number of mistakes any pattern-
extraction learning algorithmmust make under common as-
sumptions, by showing how to adapt results from learning
theory. While previous work has targeted specific algo-
rithms, our work generalizes these attacks through theoreti-
cal analysis to any algorithm with similar assumptions, not
just the techniques developed so far. We also analyze when
pattern-extraction algorithms may work, by showing condi-
tions under which these lower bounds are weakened. Our
results are applicable to other kinds of signature-generation
algorithms as well, those that use properties of the exploit
that can be manipulated.

1 Introduction

It is well-known that automatic signature generation is
important – often, there may be small time-windows be-
tween when a vulnerability is discovered, and when fast-
spreading exploits that target it appear. Generating signa-
tures manually is slow and error-prone, and thus, we need
automatic signature generation.
However, there are some requirements for the generated

signatures to be useful. These signatures need to identify

most of the exploits (have low false negatives), and falsely
identify very few non-exploits (have low false positives).
They need to capture properties of exploits that do not ap-
pear in normal traffic. They also need to be efficient so that
signatures can be generated quickly. These requirements
make automatic signature generation a hard problem.
A major line of research effort has focused on finding

signatures using pattern-based analysis, i.e., by extracting
byte patterns that uniquely distinguish exploits using net-
work traffic statistics [17, 18, 20, 25, 29]. Such pattern-
extraction algorithms are attractive because the signatures
can be efficiently generated andmatched. Pattern-extraction
algorithms are, at core, machine learning algorithms: they
use a pool of data containing exploits and normal traffic
(called the training pool), and look for invariant byte strings
that are present across all exploit packets, but do not oc-
cur in the normal traffic. Earlier work has shown that such
distinguishing invariants exist, even when the payloads are
self-encrypting, e.g., even in polymorphic worms, the high-
order bits of the return address of buffer overflows and pro-
tocol framing bytes are found to be invariant [20, 25]. This
research has led to interest in how pattern-extraction algo-
rithms could be attacked or evaded [15, 26, 28].
In this work, we show fundamental limits on the ac-

curacy of a large class of pattern-extraction algorithms in
an adversarial setting. We formulate a framework that al-
lows unified analysis of all such pattern-extraction algo-
rithms, and show lower bounds on the mistakes all pattern-
extraction algorithms need to make under some common as-
sumptions, by showing how to adapt results from learning
theory. At a high level, our results show that algorithms for
pattern-extraction signature-generation can be forced into
making a significant number of false positives or false neg-
atives. Earlier work on the limitations of pattern-extraction
algorithms have focused on individual algorithms and spe-
cific systems. For example, Perdisci et al. [28] demonstrate
if an attacker can systematically inject noise into the train-
ing pool, Polygraph fails to generate good signatures. New-
some et al. [26] illustrate similar results in Paragraph even
when adversary cannot inject arbitrary noise into the train-
ing pool. Our results generalize these earlier results through

theoretical analysis, demonstrating that similar attacks are
possible on all such algorithms, with similar assumptions.
The central conclusion of our theoretical analysis is that

any pattern-extraction (and similar learning-based) algo-
rithms could be manipulated into making a number of mis-
takes on arbitrary exploits, as a function of the adversary’s
power to add misleading information to his exploits. Be-
cause we cannot predict how future exploits would look, it
is important to know (and this result shows us) when and
how much pattern-extraction algorithms could be fooled.
These results hold when there is a valid signature of invari-
ants, the signature-generator uses randomized algorithms,
whose output the adversary cannot predict, and even if
host-monitoring techniques like taint analysis [7,11,27,30]
are used to identify exactly which packets are exploits and
which are not.
Our results are independent of the kind of function that

the algorithm tries to learn over the byte sequence, (i.e., the
algorithm is allowed to learn any arbitrary complex func-
tion over the invariant bytes), or computational complexity
of the algorithm. Our analysis also offers insight into algo-
rithms that refuse to tolerate one-sided error, and the lower
bounds for these algorithms are much higher than results
for more general algorithms. These results show that, it is
indeed much easier for an adversary to manipulate an algo-
rithm that makes very few false positives, or very few false
negatives.
Existing experimental results (Perdisci et al. [28] and

Paragraph [26]) already illustrate that the assumptions
for our analysis hold, at least for current families of
pattern-extraction algorithms. Our results demonstrate
that if pattern-extraction algorithms (and similar signature-
generation algorithms) need to work in an adversarial envi-
ronment, they need to be designed so that the assumptions
do not hold; i.e., that the adversary cannot find a large set
of byte strings, resemble the exploit’s invariants in traffic
frequency statistics.
We also explore when pattern-extraction algorithms (and

similar signature-generation algorithms) may work. For
example, if an exploit contains invariants that are never
present in normal traffic, then it seems likely that the exploit
can be identified. Our results show that the lower bounds of
some families of algorithms are noticeably weakened, un-
der some conditions, i.e., when there is a gap between the
distribution of tokens in normal traffic and the invariants of
exploits. Our analysis also offers insight into the kind of
algorithms that may work and highlights the importance of
the function (over the invariants) that the algorithm learns:
algorithms that look for a simple set of invariants (learning
a simple conjunction of invariants) have far worse lower
bounds than algorithms that look for more complex func-
tions over the invariants; this implies that, unlike the results
for arbitrary exploits, it is far easier for the adversary to ma-

nipulate those simple functions when there is a gap in the
traffic.
Our results are also applicable to other signature-

generation techniques besides pattern-extraction algo-
rithms. If, for example, a signature-generation algorithm
looks for protocol fields exceeding specific lengths, but
chooses the lengths based on malicious traffic (e.g., COV-
ERS [21]), our results would still hold. The key limitation in
pattern-extraction algorithms is that the adversary can easily
add patterns that are similar to exploit’s invariants, and al-
gorithm cannot distinguish between the invariants and those
added by the adversary (red herrings). Our results are appli-
cable as long as this kind of limitation holds: the adversary
can embed similar properties to those invariant to the ex-
ploit, and the algorithm cannot distinguish between them.

2 Definitions and Overview

We now present the main definitions and assumptions
that we use throughout the paper.

2.1 Definitions

A signature is a function σ that classifies a given byte
sequence (or, equivalently, packet) as malicious or non-
malicious, i.e., σ(y) = Malicious, when byte sequence y is
an exploit, and σ(y) = Non-Malicious, when y is benign.
A signature may be based on various properties of the

byte sequence, and we denote these properties under con-
sideration for signature generation as attributes. An at-
tribute A is a function whose input is the byte sequence
and output is boolean: e.g., A could be whether aaaaa is
present in a byte sequence. For this attribute, for byte se-
quence aaaaattttt, A(aaaaattttt) = true, while for byte
sequence aabbccttttt, A(aabbccttttt) = false. A signa-
ture could then be considered a function of attributes; thus,
in effect, a signature is a function over boolean conditions.
e.g., if A(y) and B(y) are attributes, a signature could be
σ(y) = {Malicious : A(y) ∧ B(y)}. We say that an at-
tribute is satisfied if it evaluates to true.
Recall pattern-extraction algorithms look for invariant

byte strings that are present in the exploit, and not in nor-
mal traffic, and these invariants are byte strings that must all
be present in the exploit for it to be malicious. e.g., a sig-
nature reported by Polygraph [25] is a pair of byte strings,
’\xFF\xBF’ and ’\x00\x00\FA’ (the Lion worm exploit-
ing the BIND TSIG vulnerability). We refer to each such
byte string as a token. In our terminology, the attributes
test for whether each of these tokens is present, and signa-
ture is a conjunction of the two attributes. We could denote
this signature as σ(y) = {Malicious : ’\xFF\xBF’∈ y ∧
’\x00\x00\FA’∈ y}.

More generally, for pattern-extraction algorithms, an at-
tribute tests for the presence of a particular token, perhaps
at a particular location. For algorithms that use more infor-
mation, other kinds of attributes would also be needed, e.g.,
COVERS [21] considers lengths of fields, so an attribute
would also represent whether a particular field in the byte
sequence is longer than a specific value.
For a fixed set of attributes G, we can represent a byte

sequence by the attributes in G that it satisfies, and we de-
scribe how to do so now. We define an instance i for a byte
sequence and a set of attributes G to be a booleanm-tuple,
i.e., i ∈ {0, 1}m, where the ith bit is 1 if the ith property
holds true for the byte sequence. An instance thus is a rep-
resentation of a byte sequence for a set of attributes. So, if
G consists of the two attributes “Is {aaaaa} present?” and
“Is {bbbbb} present?”, the byte sequence aaaaaxxxxbbbb
would be represented as (1, 1), and cccccxxxxxbbbb would
be represented by (0, 1). The instance space is the set of
all instances I = {i ∈ {0, 1}m}. For the rest of this pa-
per, we consider the set of possible attributes G to be fixed.
Every byte sequence is represented as a vector in the in-
stance space, and our discussion will be in this instance
space {0, 1}m.
We also introduce some machine learning terminology.

The algorithm is given some training data, which consists
of malicious and non-malicious instances, along with the
labels of each instance, so that it knows which instances are
malicious and which are not. The algorithm finds a hypoth-
esis, a function that classifies a given instance as malicious
or non-malicious.
We define the true signature to be the signature that

achieves 0 false positives and 0 false negatives, on any set
of instances presented to it. In learning terminology, the
true signature is the target hypothesis that needs to be found
by the learning algorithm. Once the space of attributes is
fixed, we assume there is only one true signature; of course,
there may be multiple functions to represent this true signa-
ture.(If there are multiple signatures that can always achieve
0 false positives and false negatives, a conjunction of these
signatures is also a true signature, so this assumption is not
limiting.) We refer to the attributes in the true signature as
critical attributes.

2.2 Overview of Learning Framework

The central question that we want to answer is the fol-
lowing: to what extent can an adversary force every learn-
ing algorithm to learn the signature slowly? We answer this
question by presenting lower bounds on the algorithm’s per-
formance. To do so, we need some assumptions, and in this
section we describe and justify some basic assumptions we
use. Our goal in choosing these assumptions is to give the
algorithms in the signature generator as much power as pos-

sible. The lower bounds show that, even so, the adversary
can evade detection for a long time.
We focus on four different assumptions here: the learn-

ing model, the form of the true signature, the label correct-
ness, and the adversary’s knowledge of the algorithms.

Learning model: Our analysis assumes that the algo-
rithm is allowed to update its internal state after each batch
of data that it sees, and these updates may be made over all
of the data accumulated so far. For example, if the algo-
rithm has 100 packets in its initial training pool, and then
gets 50 packets in the next batch, the algorithm may update
its signature after seeing the second batch, and may then use
all 150 packets to generate the updated signature.
This is a little different from the typical machine learn-

ing setting, where the algorithm is given a large batch of
training data, allowed to learn a function over it, and then
tested on new testing data. However, since we have a ma-
licious adversary who controls part of the data and aims to
delay learning, the adversary could ensure that, without up-
dates, the algorithm never learns a good signature. By al-
lowing updates, algorithm might find a good signature over
a longer period of time. We can also perform a more in-
formative analysis about how the algorithm’s performance
evolves with more data over time. The learning algorithm
still does get an initial training pool, which can contain any
number of malicious and non-malicious samples, as long as
the assumption of Section 3 is obeyed.
In addition, since the adversary wants the algorithm to

make as many errors as possible, the adversary aims to re-
lease information about the true signature as slowly as pos-
sible. The adversary can present information about exactly
one new instance in each batch (e.g., all the malicious in-
stances in the batch can be the same, so a mistake on the
instance would cause a 100% false negative). 1 In effect, it
is as if the algorithm gets one new instance at a time, classi-
fies it, and updates its internal state based on that instance.
Our bounds will be in terms of the number of mistakes the
algorithm makes in this setting, which also corresponds to
the number of updates it requires. In the learning theory
literature, this is known as the mistake-bound model [22].

Form of the true signature: We assume that the true
signature of the exploit is a conjunction of attributes – i.e.,
all attributes in the conjunction must be satisfied by the
packet. We do so because conjunctions are the simplest
form of signatures that have been historically considered,
and lower bounds for conjunctions imply lower bounds for
more complex functions that can represent conjunctions.
For example, these lower bounds are also lower bounds for
regular expressions, because regular expression signatures
can represent conjunctions.
However, we do not make any assumption on the form

1Indeed, if the algorithm can update its hypothesis only every batch, it
is optimal for the adversary to present exactly one instance at a time.

of hypotheses chosen by the algorithms for its internal state.
The algorithm could use, for example, a weighted combina-
tion of tokens as its classifier. The learning algorithm is not
required to learn a conjunction.

Label Correctness: We assume that every label given
to the algorithm is correct. This means the adversary is
forced to be truthful, and cannot decide to change the signa-
ture (target hypothesis) after the algorithm has been given
data. This affords the algorithm a lot of power: it is as if
the algorithm has an oracle like a dynamic runtime checker,
and can test each input on it. If the adversary can lie, by
adding carefully crafted noise for some instances, or change
the target, the lower bounds would only increase.

Adversary knowledge: We assume that the adversary
knows the kinds of attributes considered by the algorithm
in question. In some of our bounds (for deterministic algo-
rithms), the adversary needs to know the algorithm he aims
to mistrain, but this is not required for the bounds on the ran-
domized algorithms. These randomized bounds hold when
the adversary (a) knows the algorithm, but has no access to
its private randomness, (b) does not know the algorithm, or
(c) does not know the parameters (e.g., statistical algorithms
using soft decision boundaries).

3 Reflecting Set

In this section we describe the formal framework we will
use to analyze limitations on learning-based signature gen-
eration. Our key assumption is that the adversary has the
ability to construct reflecting sets: spurious attributes (e.g.,
tokens) that, to the learning algorithm, look at least as plau-
sible apriori as the actual attributes in the signature. These
take the role of the ”concept class” in learning theory, and
the larger the set, the stronger the limitation. Below, we
motivate the notion of reflecting sets and give formal defini-
tions, focusing on pattern-extraction algorithms, especially
Polygraph [25] & Hamsa [20].

3.1 Motivation & Definitions

We begin by observing a common property of many
strategies proposed to evade detection by pattern-extraction
algorithms. A wide range of strategies have been proposed
for evasion, and all of them succeed because the adversary
can increase the number of tokens that resemble the tokens
critical to the signature. e.g., In red herring attacks [25],
the attacker adds spurious tokens to the true signature, and
the attack succeeds when the algorithm mistakenly con-
siders those as part of the true signature. Likewise, in
noise injection attacks [28], allergy attacks [15] and suspi-
cious/innocuous pool poisoning attacks [26], the adversary
manipulates the token distribution in the training or testing
pool, by adding well-crafted (malicious or normal) packets

with carefully chosen tokens, and changing the distributions
of various tokens in the training pool. Here again, how ef-
fective the attack is depends on how much the attacker can
change the tokens considered by the algorithm.
Thus, these attacks succeed when the algorithm is unable

to apriori distinguish between the tokens critical to the true
signature, and any spurious tokens that happen to resemble
these critical tokens. The attacker forces the algorithm to
fail by carefully increasing the appropriate resemblance be-
tween the critical and spurious tokens, and he may be able
to do this for other kinds of attributes as well. We will use
the term reflecting sets to describe these sets of resembling
attributes, as each attribute within a reflecting set appears to
reflect all of the other attributes in that set.

Definition: We now define reflecting sets formally: Let
S denote the true signature for an exploit, and let A denote
a signature generation algorithm. Let PrA[S′] denote the
probability that A gives to the function S′ being the true
signature. SupposeC1, C2, . . . Cj be sets of attributes, such
that the signature S contains an attribute si in each Ci. Let
T is be the set of functions obtained by choosing one or
more attributes ci ∈ Ci, to replace the corresponding prop-
erty si in S. Let Wm and Wnm be the malicious and non-
malicious instances seen by the algorithm so far, and let
W = Wm ∪ Wnm. Let TW be the set of functions in T
consistent with W . If PrA[T] = PrA[T ′], for any pair of
functionsT, T ′ ∈ TW , for allW , then the setsC1, C2 . . . Cj

are reflecting sets for the signature S and the algorithmA.
Thus, from the point of the view of the algorithm, it is

as if any combination of attributes, as long as one is picked
from each reflecting set, could be the true signature even
after analysis over all of the training data. If T denotes the
set of all combinations of attributes that includes one from
each reflecting set, then to the algorithm, the true signature
S appears to be drawn at random from T .
An additional aspect of this definition is that reflecting

sets are specific to an algorithm (or a family of algorithms).
We define the reflecting sets this way because different al-
gorithms could use different aspects of possible attributes
to identify a likely signature, and therefore, reflecting set
for one algorithm may not be a reflecting set for another al-
gorithm. For example, the conjunctions algorithm of Poly-
graph uses every infrequent token that appears in all of the
malicious instances as its signature. For this algorithm, a
reflecting set is very easily constructed by simply adding
more infrequent tokens to all of the malicious instances.
Such a simple reflecting set, however, would not work for
other algorithms, e.g., naive Bayes algorithm in Polygraph,
or Hamsa’s algorithm.

Learning with Reflecting Sets: In this paper, we ana-
lyze the problem of learning a signature with a malicious

adversary as the following: for every critical attribute, the
adversary may include the respective reflecting set in the
packets (normal or malicious, as needed). The goal is to
find the true signature by identifying the critical attributes,
isolating them from their reflecting sets. We define the prob-
lem formally in the next section.

3.2 Finding Reflecting Sets

The results of this paper are applicable to algorithms
where it is possible/easy for the adversary to construct re-
flecting sets (or sets with a bias away from the true signa-
ture) for the attributes in the true signature, e.g., pattern-
extraction algorithms. In general, this could be done for
algorithms that require information from (adversarially-
generated) exploits, but cannot identify the true cause of the
exploit, and therefore, the attribute or parameter they learn
can be forged by the attacker.
It is also not strictly necessary for all the attributes in the

reflecting set to have identical traffic statistics: the goal is to
capture the algorithm’s inability to distinguish between dif-
ferent attributes inside the set, and therefore, unable to bias
any selection towards the true signature. If the reflecting
sets are chosen so that the algorithm’s choice of signature
is less likely to be the true signature, then the lower bounds
would only increase. e.g., Hamsa’s algorithm prefers tokens
with the smallest frequency in normal traffic pool, and the
attack suggested adds spurious tokens that are even less fre-
quent, and therefore, would cause the algorithm to make at
least as many mistakes.
The quantitative bounds on algorithms’ errors are related

to the size of the reflecting sets that can be found for the at-
tributes. The size of any particular reflecting set depends
on the nature of the exploit (e.g., its distinguishing prop-
erties, the protocols applicable), the adversary’s ability to
manipulate the training and testing pool, and the kinds of
signatures that the algorithm aims to learn for it. The ad-
versary may craft these reflecting sets either by explicitly
including selected attributes in the malicious instances, or
sending specific types of instances in the training data. Be-
cause the adversary crafts the reflecting set for the signature
generators, the adversary knows the reflecting set.
Earlier experimental work (e.g., in Paragraph) has

demonstrated that reflecting sets can be found for current
generations of pattern-extraction algorithms. Further, poly-
morphic blending attacks [14] suggest that it may be possi-
ble to find such reflecting sets for many pattern-extraction
algorithms, as long as the algorithms use byte-based traffic
statistics for finding the priors of the critical tokens in the
signature (e.g. [33]). We believe it would be typically pos-
sible to find reflecting sets for pattern-extraction algorithms
in general, especially those which use the traffic statistics of
individual tokens, due to the heavy-tailed nature of normal

traffic distribution.

4 General Adversarial Model

In this section, we consider a general adversarial setting,
and we present impossibility results on learning algorithms
that generate signatures in this model.

4.1 Learning Model

We present our analysis in the mistake-bound model of
learning. As described in Section 2.2, we choose this model
because it affords the algorithm significant power, but even
with this power, the adversary can delay signature gener-
ation. In this model, the algorithm gets an initial training
pool (of any size), and then gets one instance at a time to
classify, classifies it as malicious or non-malicious, and is
then told the correct label of the instance. The algorithm
then updates its hypothesis. The algorithm’s goal is to con-
verge to the true signature while minimizing the mistakes
made.
Each instance given to the learning algorithm is an m-

tuple boolean vector, i.e., a point in {0, 1}m. The true sig-
nature, or target hypothesis, is a conjunction of n attributes:
an instance must contain all n attributes to be malicious. As
discussed in Section 3, we assume the adversary can find a
reflecting set Ci of size k for each critical attribute i, and
the algorithm cannot distinguish between the attributes in-
side Ci. It may, however, be able to distinguish between
attributes in different reflecting sets, and we need to ac-
count for this in the lower bounds. Thus, the set of all valid
hypotheses is the set of all conjunctions containing an at-
tribute from each reflecting set; thus |H | = kn. We refer to
the n bits in the true signature as the target bits. Because
the adversary crafts the malicious data, he can ensure that
even with an initial training pool, no information is released
about the critical attribute, to distinguish it in its reflecting
set. The total number of attributes m = nk, the product of
the number of critical attributes and the size of each reflect-
ing set.
Our bounds are in terms of the number of mistakes made

by the algorithm. The mistakes made can be interpreted as
the number of updates required to converge to the true sig-
nature, when the algorithm receives the correct label right
away. The mistakes in this model imply false positives and
negatives in the standard batch setting: a mistake on a ma-
licious instance is a false negative, and a mistake on a non-
malicious instance is a false positive. The exact false posi-
tive and negative rate that a mistake (or a sequence of mis-
takes) causes depends on the specific algorithm, but a worst-
case estimate on any particular batch can be seen: whenever
the algorithm makes a mistake, the adversary can generate
a distribution that causes a 100% false negative rate (for a

malicious instance), or potentially a large false positive rate
(for a normal instance).
There are two ways in which target hypothesis can be

chosen for the lower-bounds analysis. The adversary can
choose the target hypothesis from the setH , or nature picks
the target at random from the set H , and the adversary
knows the target hypothesis selected. Lower bounds for
the second way of choosing the target clearly imply lower
bounds for the first.

Representation of Hypothesis Even though the target
hypothesis is a conjunction of the target bits, there is no
requirement that the learning algorithm learn a conjunction
of the target bits. That is, the learning algorithm is free to
choose any function, as long as it agrees with the target hy-
pothesis on all the instances seen.
Formally, let x1, . . . , xm denote m bits of an instance,

where xj = {0, 1}. In this context, a conjunction hypoth-
esis is a function xa ∧ xb ∧ . . . xr, for some r values, and
evaluates to true if all bits xa . . . xr are 1. A linear separa-
tor hypothesis is a function of the form

∑

i∈[1,m] wixi > q
where the weights wi ∈ $. All instances that satisfy the
condition (i.e., weighted combinations of bits exceeds the
threshold q) evaluate to true.
The representation of the hypothesis is the type of func-

tion learnt by the algorithm, e.g. a linear separator or con-
junction. Polygraph uses both conjunctions and linear sepa-
rators, and Hamsa uses conjunctions. The results in this sec-
tion are independent of the hypothesis representation cho-
sen.

4.2 Results

We now present our results in the learning model de-
scribed above. Each of these lower bounds can be derived
from more general results in learning theory; our proofs
show an explicit construction of instances that achieve the
bounds for our setting. For space reasons, we defer all
proofs to the appendix. In the proof of each theorem, we
show a sequence of instances for which any algorithm must
achieve the stated mistake-bound. 2
We first present bounds on the overall number of mis-

takes that any deterministic or randomized algorithm could
be forced to make. Theorem 4.1 shows that every determin-
istic algorithm, regardless of what it learns, could be forced
to make at least n log m

n mistakes by an adversary – thus,
the mistakes grow linearly in the size of the signature, but
only logarithmically in the size of the reflecting sets.

2The adversary does not require knowledge of the algorithm’s be-
haviour to generate the next instance. He would for the lower bounds on
deterministic algorithms, but the bounds for the randomized algorithms
apply even if the algorithm is a blackbox to the adversary.

Theorem 4.1. (Deterministic Algorithms) For every de-
terministic algorithm, an adversary can generate a se-
quence of instances such that the algorithm is forced to
make at least n log k mistakes, where k is the size of the
reflecting sets.

Since the bound of Theorem 4.1 scales logarithmically
with the number of spurious attributes, it is natural to ask
whether this lower bound is tight. The Winnow algo-
rithm [22] achieves a bound within n log n additive factor,
showing that the bound is nearly tight.
However, much of the error in the previous theorem

comes from the adversary’s ability to predict what the al-
gorithm would do next. A common solution is to allow the
algorithm to use randomization. Theorem 4.2 analyzes the
number of mistakes made if the algorithm is randomized (or
equivalently, unknown) to the adversary. It shows that even
if the signature generator uses a randomized algorithm, the
algorithm can be forced to generate a lot of mistakes in ex-
pectation, half the mistakes of the deterministic case.

Theorem 4.2. (Randomized Algorithms) For any ran-
domized algorithm, an adversary can generate a sequence
of instances so that the algorithm will make, in expectation,
at least 1

2n log k mistakes, where k is the size of the reflect-
ing sets.

Theorem 4.2 shows that an arbitrary deterministic algo-
rithm is not too much worse than a randomized algorithm,
and suggests that some deterministic algorithms may not
fare too poorly. This result is, however, dependent on the
nature of determinism in the algorithm. For example, one
kind of extreme determinism is to guarantee no false posi-
tives or no false negatives. Such algorithms are attractive,
since it seems better to have to tolerate only one kind of
error.
We now consider one-sided algorithms: algorithms

which are not allowed to make (many) false positives or
(many) false negatives. Our results show that one-sided al-
gorithms can be forced into making many more errors than
algorithms with arbitrary break-down of mistakes (e.g., in
comparison to Theorem 4.1). Guaranteeing a small num-
ber of mistakes of either false positives or false negatives
forces the algorithm to make a large number of mistakes of
the other kind.

Theorem 4.3. (Bounded False Positives) If an algorithm
that is not allowed to make any mistakes on non-malicious
instances, there exists a sequence of instances such that it
is forced to make at least n(k − 1) mistakes on malicious
instances. More generally, consider an algorithm that is
forced to make fewer than t mistakes on the non-malicious
instances, for t ≤ n. Then the algorithm must make at least
(n − t)(k − 1) mistakes on the malicious instances.

Such large mistakes are not special to only algorithms
that require a small number of false positives. Theorem 4.4
shows mistake-bounds for algorithms that must make very
few false negatives. Indeed, these mistake-bounds are much
larger than those in Theorem 4.3, for kn ' n (i.e., since
reflecting sets are large but contain only one target bit each).

Theorem 4.4. (Bounded False Negatives) If an algorithm
is allowed to make no mistakes on malicious instances, an
adversary can generate a sequence of instances so that
the algorithm is forced to make kn − 1 mistakes on non-
malicious instances. More generally, consider a determin-
istic algorithm that is forced to make fewer than t mistakes
on malicious instances, for t < n. Then the algorithm must
make at least k

n

t+1 −1mistakes on non-malicious instances.

We note briefly that lower bounds in Theorems 4.3 and
4.4 are may not be tight for large values of t. Nevertheless,
they still serve to illustrate the effect of allowing very few
false positives or false negatives.
We note also that the bounds of Theorems 4.3 and 4.4

are very different. Intuitively, the basic difference between
them arises from the kind of the information that is encoded
in an exploit (malicious instance), when compared to a non-
exploit (non-malicious instance) packet. In Theorem 4.3,
the adversary forces the algorithm to learn the exploit from
only exploit information, while in Theorem 4.4, the adver-
sary forces the algorithm to learn the exploit from only non-
exploit information. As there may be far more non-exploit
packets than exploits, each of which encodes very little in-
formation about the exploit, the adversary can be able to
force many more errors in Theorem 4.4.

4.3 Practical Implications

Discussion The central conclusion of the theoretical
analysis is that any pattern-extraction (and similar learning-
based signature-generation) algorithms could be manipu-
lated into making a significant number of mistakes, in terms
of the total number of false positives and false negatives
generated. This holds when the signature-generator uses
randomized algorithms, whose output the adversary can-
not predict. It holds even if host-monitoring techniques
like taint analysis [9, 11, 27, 30] are used to identify exactly
which packets are malicious and which are not. Our anal-
ysis suggests that these algorithms could work only when
they are designed so that a large reflecting set cannot be
found.
Existing experimental research has already demonstrated

the feasibility of these attacks on real systems, e.g. Para-
graph shows that it is feasible to add a large number of to-
kens to a real buffer-overflow exploit against ATPhttp web
server, and shows how this affects the detection of poly-
morphic worms by Polygraph and Hamsa. This disruption

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

k: Reflecting Set Size

N
o.

 o
f u

pd
at

es

Lower Bounds −− Determ
Lower Bound − Randomized
Polygraph − Conj
Hamsa
Polygraph − Naive Bayes

Figure 1. Comparison of lower bounds and
current algorithms for general case: number
of updates required before convergence to
the true signature.

is caused by the sequence of the instances presented to the
algorithms, so that the algorithm does not have enough in-
formation to infer the correct target. In our proofs, we show
constructions of sequences of instances that force every al-
gorithm to make a lot of mistakes.
The results also show that if pattern-extraction algo-

rithms need to be used, an algorithms like Winnow [22]
may guarantee better accuracy in adversarial settings. Us-
ing a more complex algorithm would not gain a significant
improvement. This is especially so these bounds are in-
dependent of the representation of the algorithms used (one
could learn any arbitrary complex function over the instance
space), or the algorithm’s computational complexity. Still,
Winnow’s mistake-bound offers insight into using a more
expressive representation than the basic conjunction used in
several algorithms.
Lastly, our analysis offers insight into algorithms that

refuse to tolerate one-sided error. The mistake bounds for
these results are much higher than results for more general
algorithms. These results show that, it is indeed much eas-
ier for an adversary to manipulate an algorithm that makes
very few false positives, or very few false negatives. Specif-
ically, note differences in their dependence on k, the size of
the reflecting set: Theorems 4.1 and 4.2 have a logarithmic
dependence on k, while Theorems 4.3 and 4.4 have a poly-
nomial dependence on k. Thus, for an arbitrary algorithm,
the adversary would not gain significantly from arbitrary in-
creases to the padding, though he does so for one sided al-
gorithms.

Comparison to Existing Systems As a specific illustra-
tion of the bounds, we compare lower bounds with the es-
timated mistakes (through calculation) that would be made
by the Polygraph suite of algorithms and Hamsa. These
mistakes are made when reflecting sets can be found for
these pattern-extraction algorithms, but this has already
been demonstrated in Paragraph.
For our comparisons, we use the attacks suggested in

Paragraph for each of the algorithms. In the red herring
attack suggested on Polygraph’s conjunction algorithm, a
mistake can be induced on every presented instance by
dropping a token each time. Likewise, for the Hamsa’s al-
gorithm, a mistake can be induced for each spurious token
by dropping the token with the smallest frequency at the
time. On the naive Bayes algorithm, mistakes can be in-
duced by the correlated outlier attacks shown: each mali-
cious instance presented is crafted with tokens appearing in
normal traffic, forcing the algorithm to classify it as non-
malicious.
Fig. 1 shows the number of iterations in which mistakes

would be made, as a function of the size of the reflecting set,
for a signature with 10 tokens. Each of these algorithms re-
quire iterations linear in nk, where n is the number of true
critical attributes in the signature, and k is the size of the re-
flecting set. The lower bounds, on the other hand, grow log-
arithmically in k. Of course, it is harder to find a reflecting
set for the Bayes algorithm than the conjunction algorithm
in Polygraph, and it is similarly harder to find a reflecting
set for Hamsa’s algorithm. For example, if there are 10 to-
kens in the true target signature, a reflecting set of size 10
for each token would mean that the lower bounds for deter-
ministic algorithms require 34 updates, and the randomized
algorithms require 17 updates. In contrast, the Polygraph
conjunction algorithm and Hamsa’s algorithm could be ma-
nipulated into requiring 100 updates.
Further, all of these calculations assume that there is

an effective way to ensure that the presented instances are
(later, at time of update) correctly classified, and that up-
dates are immediate. A lag in updates would increase the
number of batches seen (and therefore, mistakes seen) be-
fore converging. If, for example, the algorithm gets the cor-
rect label only every 10 iterations, the number of mistakes
could increase by a factor of 10.

5 Exploiting Gaps in Traffic

In this section, we examine when signature-generation
algorithms would work, even in the presence of adversaries,
and when there may be large reflecting sets for the signa-
tures. For example, if an exploit’s invariant tokens never
appeared in normal traffic, it ought to be possible to identify
this exploit with pattern-extraction algorithms. Our goal is
to understand conditions under which these learning algo-

rithms might work, even if they must learn over properties
which have reflecting sets.
The lower bounds analysis in the previous section was

based on the existence of a sequence of instances (or equiva-
lently, an adversary who generated a sequence of instances)
for the algorithm to classify, and these instances could be
drawn from any point in the instance space. Thus, effec-
tively, the algorithm needed to be able to classify every
single instance correctly, and was required to have a small
number of mistakes on any sequence of instances. The hy-
pothesis found by the algorithm was required to agree with
the target hypothesis on every single instance in the instance
space.
However, there might be situations when such a require-

ment is more stringent than necessary. For example, while
we would certainly want the algorithm to be able to clas-
sify all malicious instances generated by the adversary, per-
haps we do not need the algorithm to classify all possible
non-malicious instances, unless they are regularly present
in normal traffic. A reasonable goal might be to ask an algo-
rithm to only classify correctly the non-malicious instances
that are truly present in normal traffic, rather than any arbi-
trary combination of properties generated by an adversary.
In this situation, an algorithm would need to agree with the
target hypothesis only on the malicious instances, and the
non-malicious instances present in normal traffic.
Thus, algorithm can disagree with the target hypothesis

on a region of the instance space, the region where the non-
malicious instances are not present in normal traffic. In this
case, it might be possible to make fewer mistakes, as a func-
tion of how large the gap between the malicious instances
and the normal instances are. The analysis in Sec. 4 ad-
dresses the case when there is no gap between normal in-
stances and malicious instances.
Recall that the instance space is a boolean hypercube in

{0, 1}m. The malicious instances are instances which have
all n target bits set to 1, regardless of the values of the re-
maining m − n bits. The non-malicious instances are all
the remaining instances. The non-malicious instances truly
present in normal traffic may be only a small subset of these
instances. We need a way to quantify the region of the in-
stance space that the algorithm does not need to classify
correctly. We do this by defining how to measure the gap
between the two types of traffic in Section 5.1. Then, in
Section 5.2, we describe the learning model. We describe
results in Section 5.3, and their practical implications in
Section 5.4.

5.1 Defining the Gap

Intuitively, our goal is to measure how close the normal
traffic is to the malicious instances, e.g., if few attributes of
the malicious instances are present in the normal instances,

wewould like the gap to be large. Further, we would like the
gap to capture some intrinsic property between the normal
traffic and the malicious instances, which the adversary can-
not manipulate over time. That way, we can then measure
the effect of the adversary’s manipulation of the malicious
instances for different kinds of gap.
We measure the gap in the following manner: let Z be

the set of target attributes – the attributes that must truly be
present in the malicious instances (in our notation n = |Z|).
We define the instance-overlap of a normal instance i to be
the fraction of attributes of Z that is present in the instance.
We define overlap-ratio of the normal traffic to be the max-
imum instance-overlap of any instance in normal traffic. In
other words, the fraction of target attributes present in a nor-
mal instance is, at most, the overlap-ratio. So, for example,
an exploit whose invariant is a single token that never ap-
pears in normal traffic has overlap-ratio 0. Our definition is
motivated by the observation that because tokens extracted
in signatures are very rare in normal traffic, and the appear-
ance of multiple tokens together is even rarer.

5.2 Learning Model

The learning model in this section is similar to the one in
Section 4, however, we need to make some crucial changes.
A hypothesis is overlap-equivalent to the target hypothesis
if the two hypotheses agree on all the malicious instances,
and all non-malicious instances truly present in the nor-
mal traffic. The goal of the learning algorithm is to find
an overlap-equivalent target hypothesis, when the target hy-
pothesis is drawn at random from the set of all valid hy-
potheses. As in Section 4, we give mistake bounds for al-
gorithms that are allowed any number of samples, and any
kind of running time. However, the bounds now depend on
the representation that the algorithm uses to find an overlap-
equivalent hypothesis.
We use d to denote the overlap-ratio of the normal traf-

fic distribution with the target hypothesis. The overlap-ratio
also has an implication for the reflecting sets that the adver-
sary chooses. The attributes in the reflecting sets may also
need to obey the overlap-ratio, otherwise, they may not be
reflecting sets for some algorithms anymore. That is, these
sets may need to be chosen so that no more than d fraction
of the reflected attributes from different reflecting sets can
be present together in any instance in normal traffic.

5.3 Results

We now present lower bounds on the mistakes made in
this model. Unlike the previous model, these results depend
on the representation used by the algorithm, whenever the
overlap-ratio d < 1. This is because there is always a signa-
ture that can be represented in the disjunctive normal form:

the signature just looks for the presence of any of the kn

possible combinations of the attributes is always correct. 3
To our knowledge, this model has not been analyzed before.
We leave all proofs to Appendix B.
We describe lower bounds for two commonly used rep-

resentations: conjunctions and linear combinations of at-
tributes, and we show lower bounds on both deterministic
and randomized algorithms. Our bounds are in terms of the
mistakes made on a sequence of instances consistent with a
given overlap-ratio d: every non-malicious instance in the
sequence has an instance-overlap of at most d. As these
instances are consistent with overlap-ratio d, they could po-
tentially appear in normal traffic. In other words, our the-
orems imply that, when the overlap-ratio is d, there exists
normal traffic for which every algorithm has to make a cer-
tain number of errors (as a function of d).
Theorems 5.1 and 5.2 show lower bounds for learning

conjunctions for deterministic and randomized algorithms.
They show that the mistakes made by any algorithm that
is forced to learn conjunctions of attributes scales linearly
with the number of attributes, as well as the overlap-ratio of
the normal traffic distribution.

Theorem 5.1. (Deterministic Algorithms using Con-
junctions) Let the overlap-ratio of the normal traffic be d,
and let k be the number of attributes in each reflecting set.
For any d, there exists a sequence of instances consistent
with overlap-ratio d such that any deterministic algorithm
that learns an overlap-equivalent conjunction will need to
make at least (k − 1)(dn + 1) mistakes.

Theorem 5.2. (Randomized Algorithms using Conjunc-
tions) Let the overlap-ratio of the normal traffic be d, and
let k be the number of attributes in each reflecting set. For
any d, there exists a sequence of instances consistent with
overlap-ratio d such that any randomized algorithm that
learn an overlap-equivalent conjunction will make, in ex-
pectation, at least k−1

k (dn + 1) mistakes.

Next we consider the minimum number of malicious in-
stances that an adversary can send through undetected, if the
learning algorithm learns linear separators. Theorems 5.3
and 5.4 show lower bounds for algorithms that need to learn
overlap-equivalent linear separators.

Theorem 5.3. (Deterministic Algorithms using Linear
Separators) Let the overlap-ratio of the normal traffic be d,
and let k be the number of attributes in each reflecting set.
For any d, there exists a sequence of instances consistent
with overlap-ratio d such that any deterministic algorithm
that learns overlap-equivalent linear separators will need
to make at least log1/d k mistakes.

3Alternately, one can consider this signature to be an OR function of
the set of all valid hypotheses described in Section 4.1.

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

k: Reflecting Set Size

N
o.

 o
f u

pd
at

es

Lower Bounds − Determ Linear Separators
Lower Bound − Determ Conj
Polygraph − Conj
Hamsa
Polygraph − Naive Bayes

Figure 2. Comparison of lower bounds and
algorithms when there is a large gap between
the normal traffic andmalicious samples: no.
of updates required before converging to true
signature, as a function of reflecting set

Theorem 5.4. (Randomized Algorithms using Linear
Separators) Let the overlap-ratio of the normal traffic be
d, and let k be the number of attributes in each reflecting
set. For any d, there exists a sequence of instances con-
sistent with overlap-ratio d such that any randomized algo-
rithm that learns overlap-equivalent linear separators will
need to make, in expectation, at least 1

2 log1/2d k mistakes
to converge to a hypothesis equivalent to the target.

Since these lower bounds are representation-dependent,
they cannot be directly compared to the ones in Section 4.2.
However, the results for learning overlap-equivalent linear
separators are comparable to the lower bounds of Theo-
rems 4.1 and 4.2: we know that the lower bounds of Theo-
rems 4.1 and 4.2 are tight, and theWinnow algorithm learns
a linear separator. We note that d = n

n−1 , these lower
bounds approach those of Section 4.2. Thus, when the gap
between the normal traffic and malicious exploits are large,
it may be possible to learn with few mistakes.

5.4 Practical Implications

The results of this section suggest that pattern-extraction
(and similar signature-generation) algorithms would work
in practice for some kinds of exploits – they would work
better when the overlap between tokens present in normal
traffic and exploits is large. Our analysis suggests an easy
way of quickly quantifying the exploits such algorithms
may work well for. In addition, it highlights the importance

of choosing an appropriate representation to learn from:
even if all signatures are conjunctions of tokens (attributes),
choosing a more flexible representation like linear separa-
tors allows the adversary fewer ways to manipulate the al-
gorithm’s behaviour.
Fig. 2 also shows that the representations chosen by the

learning algorithm determine its accuracy significantly. It
shows the number of updates required to learn the true sig-
nature, when there are 10 tokens in the true signature, and
the overlap-ratio is 0.5 (i.e., any normal instance has at most
half the critical tokens). When the reflecting set is 10, algo-
rithms learning conjunctions still require 50 mistakes, while
those learning linear separators require only 5. Conjunc-
tions are easy for an adversary to manipulate, and therefore
can be forced to make far many more errors than linear sep-
arators. The errors on linear separators also illustrate the
extent to which the bounds are weakened with a gap in traf-
fic: the corresponding mistake-bound for arbitrary exploits
is about 30.
Of course, normal traffic is difficult to model and may

undergo rapid changes. It may be difficult to tell what the
overlap-ratio of an exploit might be, and how likely it is to
change, and of course, one cannot predict the overlap-ratios
of future exploits. Further, the data captured to find the
overlap-ratio might not be sufficient to identify a very rare
token, and one might think that the overlap-ratio is smaller
than it truly is, which would cause false positives. However,
if normal traffic continues to originate from the same kind
of distribution as the data captured, such false positives are
likely to be few and infrequent.

6 Related Work

As we have discussed pattern-extraction signature-
generation algorithms throughout this paper, we do not dis-
cuss them further here. Signature generation algorithms
that use semantic information have taken many differ-
ent directions; some examples to point at directions are
[4, 8, 12, 19, 31]. As it is not immediately clear when re-
flecting sets would exist if semantic information is used,
our results may not apply to these algorithms. A notable
exception is COVERS [21], that uses protocol semantics,
but generates a property that can be manipulated by the ad-
versary.
We next discuss prior attacks on pattern-extraction al-

gorithms. Perdisci et al. [28] showed that if the adver-
sary could add malicious noise to suspicious pool and the
normal pool, Polygraph fails to generate good signatures.
Paragraph [26], demonstrates that even with a truthful ad-
versary, Polygraph and Hamsa [20] are vulnerable to at-
tacks. Allergy attacks, forcing many false positives and
DoS against the network, also demonstrated on Polygraph
and Hamsa [6]. However, these papers demonstrate attacks

on specific algorithms and systems, while our work shows
general lower bounds. Gundy et al [15] present a different
kind of attack showing that polymorphic worms do not need
to have invariant bytes. Our work differs as it shows lower
bounds even when there invariant bytes. A related attack
on intrusion detection systems are the polymorphic blend-
ing attacks by Fogla et al. [14]. These attacks match all
byte frequency statistics of normal traffic under considera-
tion by an IDS, and thus evade detection. This is different
from our situation, as we do already have the appropriate
target attributes under consideration, and these do uniquely
identify the exploit. Our work is also complementary to that
of Crandall et al [10], as their work explores the extent to
which pattern-based signatures may need to be present at
all in the packets containing exploits. Our work shows that
even if they are present, it is quite easy for the adversary to
mislead signature generators.
Finally, we discuss related work in learning in adversar-

ial settings. The learning theory community has explored
theoretical questions on learning with malicious adversaries
and malicious noise. [2, 5, 16] In this regard, the most re-
lated work is mentioned in Sec. 4 Experimentally, there
have been a few studies on learning adverserially. Lowd
and Meek [23] study the problem of an adversary reverse
engineering classifiers, and show applications to reverse-
engineering spam filters [24]. Dalvi et al. [13] present a
game-theoretic analysis of how an algorithm and adversary
could adapt to each other, and show applications to spam
filtering. Barreno et al. [3] examine when machine learning
could be more secure at a more general level, presenting a
framework, and a lower bound on the work that an attacker
must to evade an IDS. However, none of this work is di-
rectly applicable to our problem.

7 Conclusion

We have shown fundamental limits on the accuracy of
large class of pattern-extraction algorithms in an adversar-
ial setting. Our work generalizes earlier work on attacks
which have focused on individual algorithms and current
systems. We also analyzed and shown conditions under
which pattern-extraction may work. Our results are appli-
cable to other kinds of signature-generation algorithms that
use easily forgeable properties of an exploit.

8 Acknowledgements

This research was supported in part by CyLab at
Carnegie Mellon under grant DAAD19-02-1-0389 from the
Army Research Office. The views and conclusions con-
tained here are those of the authors and should not be in-
terpreted as necessarily representing the official policies or

endorsements, either express or implied, of ARO, CMU, or
the U.S. Government or any of its agencies. We also thank
David Brumley and Jim Newsome for useful discussions
and comments on earlier versions of this paper.

References

[1] D. Angluin. Queries and concept learning. Machine Learn-
ing, 2(4):319–342, 1988.

[2] P. Auer. Learning nested differences in the presence of ma-
licious noise. Theoretical Computer Science, 185(1):159–
175, 1997.

[3] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D.
Tygar. Can machine learning be secure? In Proceedings of
the ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS), 2006.

[4] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha.
Towards automatic generation of vulnerability-based signa-
tures. In Proceedings of the IEEE Symposium on Security
and Privacy, 2006.

[5] N. H. Bshouty, N. Eiron, and E. Kushilevitz. PAC learning
with nasty noise. In Algorithmic Learning Theory, (ALT’99),
1999.

[6] S. P. Chung and A. K. Mok. Advanced allergy attacks:
Does a corpus really help? In Proceedings of 10th Inter-
national Symposium on Recent Advances in Intrusion De-
tection (RAID), 2007.

[7] M. Cost, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end contain-
ment of internet worms. In 20

th ACM Symposium on Oper-
ating System Principles (SOSP 2005), 2005.

[8] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.
Bouncer: Securing software by blocking bad input. In Pro-
ceedings of the 21st Symposium on Operating Systems Prin-
ciples (SOSP ’07), 2007.

[9] M. Costa, J. Crowcroft, M. Castro, and A. Rowstron. Can
we contain internet worms? In Proceedings of the Third
Workshop on Hot Topics in Networks (HotNets-III), 2004.

[10] J. Crandall, Z. Su, S. F. Wu, and F. Chong. On deriv-
ing unknown vulnerabilities from zero-day polymorphic and
metamorphic worm exploits. In Proceedings of the 12th
ACM Conference on Computer and Communications Secu-
rity (CCS), 2005.

[11] J. R. Crandall and F. Chong. Minos: Architectural support
for software security through control data integrity. In Inter-
national Symposium on Microarchitecture, 2004.

[12] W. Cui, M. Peinado, H. Wang, and M. Locasto. Shieldgen:
Automatic data patch generation for unknown vulnerabili-
ties. In Proceedings of the IEEE Symposium on Security
and Privacy, 2007.

[13] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma.
Adversarial classification. In Tenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD), 2004.

[14] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee.
Polymorphic blending attacks. In Proceedings of the 15th
Usenix Security Symposium (Security ’06), 2006.

[15] M. V. Gundy, D. Balzarotti, and G. Vigna. Catch me, if you
can: Evading network signatures with web-based polymor-
phic attacks. In Proceedings of WOOT’07, 2007.

[16] M. Kearns and M. Li. Learning in the presence of malicious
errors. SIAM Journal on Computing, 22(4):807-837, 1993.

[17] H.-A. Kim and B. Karp. Autograph: toward automated, dis-
tributed worm signature detection. In Proceedings of the
13th USENIX Security Symposium, 2004.

[18] C. Kreibich and J. Crowcroft. Honeycomb - creating intru-
sion detection signatures using honeypots. In Proceedings of
the Second Workshop on Hot Topics in Networks (HotNets-
II), 2003.

[19] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Polymophic worm detection using structural information of
executables. In Proceedings of the 8th International Sym-
posium on Recent Advances in Intrusion Detection (RAID),
2005.

[20] Z. Li, M. Shanghi, B. Chavez, Y. Chen, and M.-Y. Kao.
Hamsa: Fast signature generation for zero-day polymorphic
worms with provable attack resiliance. In Proceedings of the
IEEE Symposium on Security and Privacy, 2006.

[21] Z. Liang and R. Sekar. Fast and automated generation of at-
tack signatures: A basis for building self-protecting servers.
In Proceedings of the 12th ACM Conference on Computer
and Communications Security (CCS), 2005.

[22] N. Littlestone. Learning quickly when irrelevant attributes
abound: A new linear threshold algorithm. Machine Learn-
ing, 2(285-318), 1988.

[23] D. Lowd and C. Meek. Adversarial learning. In Eleventh
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2005.

[24] D. Lowd and C. Meek. Good word attacks on statistical
spam filters. In Proceedings of Second Conference on E-
mail and Anti-Spam, 2005.

[25] J. Newsome, B. Karp, and D. Song. Polygraph: Automati-
cally generating signatures for polymorphic worms. In Pro-
ceedings of the IEEE Symposium on Security and Privacy,
2005.

[26] J. Newsome, B. Karp, and D. Song. Paragraph: Thwarting
signature learning by training maliciously. In Proceedings
of the 9th International Symposium on Recent Advances in
Intrusion Detection (RAID), 2006.

[27] J. Newsome and D. Song. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of ex-
ploits on commodity software. In Proceedings of the 12th
Annual Network and Distributed System Security Sympo-
sium (NDSS), 2005.

[28] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif. Mis-
leading worm signature generators using deliberate noise in-
jection. In Proceedings of the IEEE Symposium on Security
and Privacy, 2006.

[29] S. Singh, C. Estan, G. Varghese, and S. Savage. Au-
tomated worm fingerprinting. In Proceedings of the 6th
ACM/USENIX Symposium on Operating System Design and
Implementation (OSDI), 2004.

[30] G. E. Suh, J. Lee, and S. Devadas. Secure program execution
via dynamic information flow tracking. In Proceedings of
ASPLOS, 2004.

[31] H. J. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shield:
Vulnerability-driven network filters for preventing known
vulnerability exploits. In Proceedings of the 2004 ACM SIG-
COMM Conference, 2004.

[32] K. Wang, J. J. Parekh, and S. J. Stolfo. Anagram: A content
anomaly detector resistant to mimicry attack. In Proceed-
ings of the 9th International Symposium on Recent Advances
in Intrusion Detection (RAID), 2006.

[33] K. Wang and S. J. Stolfo. Anomalous payload-based worm
detection and signature generation. In Proceedings of the 8th
International Symposium on Recent Advances in Intrusion
Detection (RAID), 2005.

A Proofs for Section 4

We first discuss some common elements of all proofs in
this section. As described in Sec. 2.2, the adversary is in
control of the malicious instances presented in the training
data. The adversary’s goal is for the algorithm to learn as
little as possible, and make many mistakes. Thus, it is op-
timal for the adversary to generate all malicious instances
identically, so that each instance contains all k attributes of
every reflection set. Note that this does not conflict with our
assumption that there is no noise in the training data, or that
the adversary is required to be truthful.
Formally, in the instance space {I = i ∈ {0, 1}m},

the argument above says that adversary gives the algorithm
many copies of the instance i = {1, 1, . . .1} in the train-
ing pool. For example, in red-herring attacks on pattern-
extraction signature generators, this instance can be thought
of the initial input given to the learning algorithms: all ini-
tial instances contain all red herrings as well as the invari-
ants. Note that the target hypothesis is selected at adver-
sarially or at random from the set H , and all hypotheses in
H are indistinguishable to the algorithm. This implies that
the adversary can ensure that algorithm gains no additional
information about the target bits from the training data.

A.1 Proof for Theorem 4.1

Proof. Our proof is an application of the bounds proven
in [22] to our setting. For completeness, we present the
whole proof here to illustrate the sequence of instances that
the attacker can present, in order to force the mistakes indi-
cated in the lower bound.
Let us assume that the algorithm can divide into bits into

sets that correspond to a critical attribute and its reflections.
By definition of reflection, the algorithm cannot distinguish
between these k properties, even if the algorithm is power-
ful enough to distinguish properties into n sets of k.
We show a sequence of instances that force the algorithm

to make log k mistakes, for a single reflecting set of k prop-
erties. Since there are n such sets, and no reflecting set can

information about targets in any other reflecting set, using
this strategy on each of will generate n log k mistakes.
With knowledge of the deterministic algorithm, the ad-

versary can decide where to place the target bit in the re-
flecting set as follows: the adversary chooses a set of t bits.
If the algorithm labels it positive, it places the target bit in
the other set of k − t bits, otherwise it places it in this set.
By observing the actions of the algorithm, the adversary has
chosen a set of min(t, k− t) bits in which to place the target
bit. The adversary can repeat this process until it isolates
where to place the target bit.
Thus, because the algorithm is deterministic, it is equiv-

alent to the adversary deciding which bit to choose as the
target bit, rather than deciding where to place the target bit.
The adversary begins by setting t = k/2, i.e., it presents

an instance with k/2 bits set. After the algorithm makes a
mistake on the instance, the adversary presents an instance
with k/4 bits from the k/2 bits where the target bit needs to
be present. This process continues until the number of bits
is reduced to 1. The ith instance presented by the adversary
has k/2i bits set to 1, and forces the adversary to commit
to the presence of the the target bit in one of k/2i bits, and
the adversary forces a mistake on each instance. Thus, al-
gorithm is forced to make log k mistakes on this sequence
of examples.
If there are multiple critical attributes within a single re-

flection set, the adversary can treat this set as two separate
reflection sets, each of size k, and achieve the same number
of mistakes.

A.2 Proof for Theorem 4.2

Proof. Our proof is an application of the bounds proven
in [22] to our setting. For completeness, we present the
whole proof here to illustrate the sequence of instances that
the attacker can present, in order to force the mistakes indi-
cated in the lower bound.
The proof is similar to Theorem 4.1. The initial instance

presented by the adversary, as before, contains all attributes,
or equivalently, allm bits set to 1. As before, the algorithm
may be sufficiently powerful to distinguish the reflecting
sets, but it cannot identify the critical attributes within each
reflecting set.
The sequence of instances that the adversary presents is

similar, but chosen randomly. For each reflecting set, the
adversary does the following before the algorithm identifies
the target bit. The adversary chooses a set of k/2 bits at ran-
dom from all sets of k/2 bits, and presents an instance with
this set of k/2 bits. Then, with probability 1/2, the target
bit is present in this set. The probability that any decision
given by the algorithm on this randomly chosen set of k/2
bits is correct is 1/2. Thus, the algorithm has a chance of
1/2 of making a mistake on this step.

Once the label is given by the adversary, the information
about the target bit is reduced to k/2, as in the deterministic
case. The adversary then picks a set of size k/4 from the
set of size k/2 containing the target bit, This continues until
the target bit is isolated, which takes log k steps. Thus, the
algorithm has an expected error of 1/2 logk.
For every reflecting set of size k, the algorithmwill make

an expected log k
2 mistakes, and so the total expected num-

ber of mistakes will be n log k
2 .

A.3 Proof for Theorem 4.3

Proof. Our proof for the case of t = 0 is an application
of the theorems in [1] to our problem, a restriction of the
general learning problem. We extend this for t > 0 in our
proof. For completeness, we present the whole proof here
to illustrate the sequence of instances that the attacker can
present, in order to force the mistakes indicated in the lower
bound.
Let t = 0. Then, we need to show a sequence of in-

stances such that the algorithmmakes at least n(k−1)mis-
takes. If the algorithm is allowed to make no mistake on
non-malicious instances, it must always label an instance
to be non-malicious when it is uncertain of the label of an
instance.
In order to have the algorithmmake a lot of mistakes, the

adversary has to present a sequence of instances such that
the algorithm is always forced to label it non-malicious. The
adversary does this as follows: in the ith epoch, he picks one
reflecting set Ci to focus on, and the instances presented
have the bits that correspond to all the other reflecting sets
(i.e., other than Ci) all set to 1 (e.g., in the first epoch, all
bits that correspond to reflecting sets C2 to Cn are always
set to 1). He starts the epoch by presenting the instance
with all bits in Ci set to 1, and he chooses one additional
non-target bit from the current instance, and sets it to 0 to
generate the instance that follows.
Thus, within an epoch, every instance received by the al-

gorithm (subsequent to the first instance) has one fewer bit
set to 1 than the previous instance. However, it does not
know whether the target bit has been set to 0, by definition
of the reflecting set, and therefore has to label the instance
non-malicious. As the adversary does not set the target bit
to 0, each instance presented to the algorithm is indeed ma-
licious. The adversary can present k − 1 such instances for
each reflecting set, and thus, there are n(k − 1) mistakes
made by the algorithm.
When t ≥ 1, the algorithm may make at most t incorrect

guesses on non-malicious instances. The adversary may use
the same sequence of instances as described above, and be-
cause the algorithm is deterministic, the adversary knows
when the algorithm will label an instance to be malicious.
The adversary can then choose the target hypothesis so that,

at that point, a non-malicious instance is presented, i.e., it is
the target bit of the relevant reflecting set that is dropped at
the instance (though all bits dropped earlier in the epoch are
still non-target bits, as before). With this change, algorithm
has then made a mistake on a non-malicious instance, but
also knows the target bit for the relevant reflecting set, and
will not make any more mistakes within that epoch. Thus,
each mistake on a non-malicious instance in this sequence
reveals the target bit of one reflecting set, but no informa-
tion about any other reflecting set. When the algorithm is
allowed t such mistakes, the adversary can force the algo-
rithm to make at least (n − t)(k − 1) mistakes on the mali-
cious instances.

A.4 Proof for Theorem 4.4

Proof. Our proof for the case of t = 0 is an application
of the theorems in [1] to our problem, a restriction of the
general learning problem. We extend this for t > 0 in our
proof. For completeness, we present the whole proof here
to illustrate the sequence of instances that the attacker can
present, in order to force the mistakes indicated in the lower
bound.
Once again, we begin with the case of t = 0. Now, the

adversary is allowed to make no mistakes on the malicious
instances. Therefore, any time the algorithm receives an
instance, it must label it malicious, unless the algorithm is
certain that the instance is not malicious.
The adversary presents any non-malicious instance with

n bits present, subject to the following two conditions: (1)
exactly one bit is present from each reflecting set, (2) all
target bits are not present in the instance (this follows by
definition of a non-malicious instance). Each instance in
this sequence is non-malicious, but the algorithm is forced
to label it malicious: the algorithm does not have enough
information to distinguish whether any particular bit present
from a reflecting set is truly the target bit for the reflecting
set, until a malicious instance has been presented.
More formally, let A denote the set of all instances that

satisfy the above two conditions: each instance in A con-
tains exactly n bits set to 1, and only one bit is set from
each reflecting set. Let imal denote the sole malicious in-
stance in A. The adversary presents instances i1, i2, . . .
from A − {imal} to the algorithm, one at a time. De-
fine Iw to be the set of the first w instances presented, for
w < |A− {imal}|. With the non-malicious instances in Iw ,
it is consistent for any instance in remaining in A − Iw to
be the malicious instance, and so the algorithm must con-
tinue to classify the next instance as malicious. Thus, the
algorithm is forced to make a mistake on every instance in
A−{imal}. There are kn−1 such instances, and therefore,
the algorithm makes kn − 1 mistakes.
A similar analysis can be applied for 0 < t < n. We fo-

cus on t = 1 for simplicity. The adversary now divides the
reflecting sets into two equal groups, A1 and A2, and each
reflecting set goes into one of A1 or A2; so, each group A1

and A2 will account for m/2 bits. The adversary chooses
instances in two phases: in the first phase, all instances set
all bits from A1 to 1, but only set one bit from each reflect-
ing set in A2 to 1 (so m/2 bits in A1 but only n/2 bits in
A2). In the second phase, the roles of A1 and A2 are re-
versed: all instances set all bits from A2 to 1, but only set
one bit from each reflecting set inA1 to 1 (som/2 bits inA2

but only n/2 bits inA1). There are kn/2−1 non-malicious
instances in each phase.
Recall that the algorithm may make at most one mistake

on a malicious instance, and thus it can call an uncertain
instance non-malicious at most once. Because the algorithm
is deterministic, the adversary knows when the algorithm
will classify an instance to be non-malicious, and chooses,
ahead of time, the target hypothesis appropriately to ensure
that at that point, a malicious instance can be presented.
We term the algorithm to be non-conservative if it la-

bels an instance malicious in the first kn/2 − 1 instances
that it sees, otherwise we term to be conservative. For
a non-conservative algorithm, the adversary presents non-
malicious instances from Phase 1 until the point where it
would label an instance malicious, and then the malicious
instance from Phase 1, to ensure that the algorithm makes a
mistake on the malicious instance. It then presents the non-
malicious instances from Phase 2 to the algorithm. With this
sequence of instances, the algorithm needs to identify the
n/2 target bits in Phase 2 without making any mistakes on
the malicious instances, and every hypothesis is consistent
with the instances and labels presented in Phase 1. Thus, the
mistake-bound of Phase 2 reduces to the case of t = 0, with
a target hypothesis of size n/2, and so a non-conservative
algorithm makes at least kn/2 − 1 mistakes.
The analysis for a conservative algorithm is similar, ex-

cept that the malicious instance is presented at the appro-
priate point in Phase 2. Thus, this algorithm has to make at
least kn/2 − 1 mistakes on the non-malicious instances in
Phase 1. The analysis when t < n is also similar, the ad-
versary simply divides the reflecting sets into n

t+1 groups,
instead of dividing it into 2 groups, when t = 1.

B Proofs for Section 5

B.1 Proof for Theorem 5.1

Proof. We prove this in two parts: we first prove that any
deterministic algorithm learning a conjunction with dn + 1
bits may be forced to make a lot of mistakes, and then we
show that there exists a sequence of non-malicious instances
consistent with overlap-ratio d, so that the adversary can
force algorithm to learn a conjunction with dn + 1 bits.

We first show that any deterministic algorithm that learns
a conjunction with dn + 1 bits could be forced to make
(k−1)(dn+1)mistakes, when reflecting sets are of size k.
We count only the mistakes made on malicious instances,
and therefore each of instances must contain all n target
bits. The adversary may generate a sequence of instances in
the following manner: he starts with the malicious instance
that has all bits set to 1, and in each subsequent instance, he
sets one additional non-target bit (from any reflecting set) to
be 0. Because the algorithm is deterministic, the adversary
can choose the target hypothesis and the bit that is set to 0
at each point and ensure that the algorithm makes a mistake
on each instance. This way, for each reflecting set, the algo-
rithm will need to have k − 1 bits set to 0 before the target
bit is revealed. As this procedure can be done for each of
the reflecting sets included in the learned conjunction, the
algorithm makes (k − 1)(dn + 1) mistakes.
Now, we show that all deterministic algorithms have to

learn a conjunction with at least dn + 1 attributes. To do
this, we use the following definitions. We term a block to
be all of the bits corresponding to a reflecting set. We say
that a block is set to 0 if all bits in the block are 0, and that
a block is set to 1 if all bits in the block are set to 1. We will
term a zero-information instance to be one that has d blocks
set to 1, and has all the remaining n−d blocks set to 0. The
setK is the set of all zero-information instances.
Each instance inK may appear in normal traffic: the in-

stance contains no more than d target bits set to 1. Each
instance in K is also non-informative about the true tar-
get – all bits in the reflecting set always appear simulta-
neously. With this set K , if the algorithm does not have
at least dn + 1 bits (each from a different reflecting set)
in its conjunction at any point, it can be forced to make
an error on a non-malicious instance: the adversary simply
chooses non-malicious instance fromK that satisfies the al-
gorithm’s conjunction, and forces it to make an error on a
zero-information instance. This mistake reveals no addi-
tional information to the algorithm about the target hypoth-
esis, and the adversary can force the algorithm to make it as
long as the algorithm’s conjunction has fewer than dn + 1
bits. Thus, the algorithm makes fewer mistakes if it always
learns a conjunction of size at least dn + 1.

B.2 Proof for Theorem 5.2

Proof. The proof is similar to that of the previous theorem,
but with two modifications. In our proof, we useK , the set
of zero-information instances defined in the proof of Theo-
rem 5.1.
First, the adversary no longer knows when the conjunc-

tion used by the algorithm contains at least dn+1 attributes;
however, he can force the algorithm to contain such a con-
junction with high probability by giving the algorithm, at

random points in the sequence of instances, a non-malicious
instance fromK . Let T be the event that the algorithm uses
a conjunction with fewer than dn + 1 attributes. For any
ε > 0, if Pr[T] > ε, an instance drawn at random from K
will force the algorithm to make a mistake with probabil-
ity ε/

(n
dn

)

. Thus, there is always a constant chance of error
on the non-malicious instances if Pr[T] > ε. Therefore, if
the algorithm uses a conjunction with few attributes, a long
sequence of random instances drawn from K could gen-
erate, in expectation, many non-informative errors on the
non-malicious instances.
Now, if the algorithm tries to find a conjunction with at

least dn + 1 attributes (and thus include attributes from at
least dn + 1 reflecting sets), it makes at least k−1

k mistakes
in expectation for each of the (dn+1) attributes. As before,
the adversary starts with the malicious instance that has all
bits set to 1, and in each subsequent round, picks one addi-
tional non-target bit (from any reflecting set) to set to 0 in
the instance that is presented. For every reflecting set that
appears in the algorithm’s conjunction, the algorithm has a
1/k chance of making a mistake when any non-target bit is
set to 0. Because the adversary can do this k−1 times within
a single reflecting set, the expected number of mistakes is
k−1

k , within one set. The adversary can ensure that dn + 1
reflecting sets are used with probability 1−ε, so the number
of mistakes it makes, in expectation, is (1− ε)k−1

k (dn+1),
for any ε > 0.

B.3 Proof for Theorem 5.3

Proof. Recall that Ci denotes the ith reflecting set. Let
U = {Ci}i. Without loss of generality, we will assume
that the bits in the instance are reordered so that the first
k bits correspond to the attributes in reflecting set C1; the
next k bits correspond to the attributes in the reflecting set
C2, and so on. Let xi,j be 1 if the jth property of the re-
flecting set Ci is present in the instance (ik + jth bit is 1 in
the reordered instance) and 0 otherwise.
A linear separator that identifies malicious instances

needs to be of the form
∑

i,j wi,jxi,j > t, where wi,j is
a weight of token, and t is any fixed value with t > 0. For
the proof, we will use K , the set of zero-information in-
stances defined in the proof of Theorem 5.1. LetD be a set
that contains exactly d-fraction of the reflecting sets. The
adversary can then force the following constraints to hold at
every point of time: for everyD,

∑

a∈D

∑

j wa,j ≤ t. This
is because if the constraints do not hold, the adversary can
force the algorithm to make a mistake on a zero-information
instance from K , and thus the algorithm makes a mistake
that does not help in identifying the target hypothesis.
As in the proof of Theorem 5.1, we show how the at-

tacker generates mistakes on the malicious instances with
these constraints. The attacker constructs malicious in-

stances as follows: for each reflecting set Ci, the attacker
chooses the p bits with the lowest weights, and sets the ma-
licious instance to have these p bits to be 1.
Let qi be the sum of the weights of the p bits for a

reflecting set Ci. Then, for every set D as defined ear-
lier,

∑

i∈D qi ≤ t p
k . Let D be the set of all such sets D.

Then, we have
∑

D∈D

∑

i∈D qi ≤ |D|t p
k . This implies that

(n−1
dn−1

)
∑

i∈U qi ≤
(n
dn

)

t p
k , giving

∑

i∈U qi ≤
tp
kd . By set-

ting p ≤ kd,
∑

i∈U qi ≤ t. Thus, the attacker can send
a malicious instance with the appropriate p bits set, and the
algorithmwill make amistake by labelling it non-malicious.
With this mistake, the attacker has reduced the size of

every reflecting set to effectively be kd from the original
size of k: the algorithm now knows that the target bit has to
be among the kd bits that were set in the malicious instance
just presented. The adversary can recurse this procedure
with the new reflecting sets, until their size has effectively
reduced to 1, and this allows the attacker to force log1/d k
mistakes, or log1/d

m
n .

B.4 Proof for Theorem 5.4

Proof. The proof is similar to that of Theorem 5.3; however,
we need to make two modifications, because the adversary
does not always know the internal state of the algorithm. In
our proof, we use K , the set of zero-information instances
defined in the proof of Theorem 5.1.
First, the adversary no longer knows whether the con-

straint
∑

i,j wi,j ≤ t/d is disobeyed; however, he can
force it to hold with high probability by presenting the al-
gorithm, at randomly chosen points in sequence, a non-
malicious instance from K . In particular, for any ε > 0,
if Pr[

∑

i,j wi,j > t/d] > ε, an instance drawn at ran-
dom from K will cause the algorithm to make a mistake
with probability dε. Thus, there is always a constant chance
of error on the non-malicious instances if Pr[

∑

i,j wi,j >
t/d] > ε – this chance of error does not approach 0 as long
as

∑

i,j wi,j > t/d. Therefore, if
∑

i,j wi,j > t/d, an
arbitrarily long sequence of random instances drawn from
K could generate, in expectation, arbitrarily many non-
informative errors on the non-malicious instances.
The second modification needed is that the adversary

constructs a slightly different sequence of malicious in-
stances present to the algorithm. In this situation, the ad-
versary cannot pick the p smallest weights, since the ad-
versary does not know the p smallest weights. Instead, the
adversary picks p/2 weights at random, from each reflect-
ing set, and constructs an instance with those bits set to
1, and the rest set to 0. The probability that these np/2
weights exceed tp/kd is at most 1/2, which means that
the probability that an mistake is caused is at least 1/2,
by Markov’s inequality. Thus, at each step, the algorithm
makes a mistake with probability 1/2, and the number of at-

tributes in each reflecting set reduces to kd/2. Thus, the al-
gorithmmakes 1/2 log1/2d

m
n mistakes on the malicious in-

stances in expectation, when the constraint
∑

i,j wi,j > t/d
holds. As this can be set to hold with probability 1 − ε,
for any ε > 0, the expected number of mistakes is at least
1
2 (1 − ε) log1/2d

m
n .

