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Abstract
We formulate and address the problem of discovering dynamicmalicious regions
on the Internet. We model this problem as one of adaptively pruning a known
decision tree, but with additional challenges: (1) severe space requirements, since
the underlying decision tree has over 4 billion leaves, and (2) a changing target
function, since malicious activity on the Internet is dynamic. We present a novel
algorithm that addresses this problem, by putting togethera number of different
“experts” algorithms and online paging algorithms. We prove guarantees on our
algorithm’s performance as a function of the best possible pruning of a similar
size, and our experiments show that our algorithm achieves high accuracy on large
real-world data sets, with significant improvements over existing approaches.

1 Introduction
It is widely acknowledged that identifying the regions thatoriginate malicious traffic on the Internet
is vital to network security and management, e.g., in throttling attack traffic for fast mitigation, iso-
lating infected sub-networks, and predicting future attacks [6,18,19,24,26]. In this paper, we show
how this problem can be modeled as a version of a question studied by Helmbold and Schapire [11]
of adaptively learning a good pruning of a known decision tree, but with a number of additional chal-
lenges and difficulties. These include a changing target function and severe space requirements due
to the enormity of the underlying IP address-space tree. We develop new algorithms able to address
these difficulties that combine the underlying approach of [11] with the sleeping experts framework
of [4, 10] and the online paging problem of [20]. We show how todeal with a number of practical
issues that arise and demonstrate empirically on real-world datasets that this method substantially
improves over existing approaches of /24 prefixes and network-aware clusters [6,19,24] in correctly
identifying malicious traffic. Our experiments on data setsof 126 million IP addresses demonstrate
that our algorithm is able to achieve a clustering that is both highly accurate and meaningful.

1.1 Background
Multiple measurement studies have indicated that malicious traffic tends to cluster in a way that
aligns with the structure of the IP address space, and that this is true for many different kinds of
malicious traffic – spam, scanning, botnets, and phishing [6, 18, 19, 24]. Such clustered behaviour
can be easily explained: most malicious traffic originates from hosts in poorly-managed networks,
and networks are typically assigned contiguous blocks of the IP address space. Thus, it is natural
that malicious traffic is clustered in parts of the IP addressspace that belong to poorly-managed
networks.

From a machine learning perspective, the problem of identifying regions of malicious activity can
be viewed as one of finding a good pruning of a known decision tree – the IP address space may be
naturally interpreted as a binary tree (see Fig.1(a)), and the goal is to learn a pruning of this tree that
is not too large and has low error in classifying IP addressesas malicious or non-malicious. The
structure of the IP address space suggests that there may well be a pruning with only a modest num-
ber of leaves that can classify most of the traffic accurately. Thus, identifying regions of malicious
activity from an online stream of labeled data is much like the problem considered by Helmbold and
Schapire [11] of adaptively learning a good pruning of a known decision tree. However, there are a
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number of real-world challenges, both conceptual and practical, that must be addressed in order to
make this successful.

One major challenge in our application comes from the scale of the data and size of a complete
decision tree over the IP address space. A full decision treeover the IPv4 address space would
have232 leaves, and over the IPv6 address space (which is slowly being rolled out),2128 leaves.
With such large decision trees, it is critical to have algorithms that do not build the complete tree,
but instead operate in space comparable to the size of a good pruning. These space constraints are
also important because of the volume of traffic that may need to be analyzed – ISPs often collect
terabytes of data daily and an algorithm that needs to store all its data in memory simultaneously
would be infeasible.

A second challenge comes from the fact that the regions of malicious activity may shift longitu-
dinally over time [25]. This may happen for many reasons, e.g., administrators may eventually
discover and clean up already infected bots, and attackers may target new vulnerabilities and attack
new hosts elsewhere. Such dynamic behaviour is a primary reason why individual IP addresses tend
to be such poor indicators of future malicious traffic [15,26]. Thus, we cannot assume that the data
comes from a fixed distribution over the IP address space; thealgorithm needs to adapt to dynamic
nature of the malicious activity, and track these changes accurately and quickly. That is, we must
consider not only an online sequence of examples but also a changing target function.

While there have been a number of measurement studies [6,18,19,24] that have examined the origin
of malicious traffic from IP address blocks that are kept fixedapriori, none of these have focused on
developing online algorithms that find the best predictive IP address tree. Our challenge is to develop
an efficient high-accuracy online algorithm that handles the severe space constraints inherent in this
problem and accounts for the dynamically changing nature ofmalicious behavior. We show that
we can indeed do this, both proving theoretical guarantees on adaptive regret and demonstrating
successful performance on real-world data.

1.2 Contributions
In this paper, we formulate and address the problem of discovering and tracking malicious regions of
the IP address space from an online stream of data. We presentan algorithm that adaptively prunes
the IP address tree in a way that maintains at mostm leaves and performs nearly as well as the
optimum adaptive pruning of the IP address tree with a comparable size. Intuitively, we achieve the
required adaptivity and the space constraints by combiningseveral “experts” algorithms together
with a tree-based version of paging. Our theoretical results prove that our algorithm can predict
nearly as well as the best adaptive decision tree withk leaves when usingO(k log k) leaves.

Our experimental results demonstrate that our algorithm identifies malicious regions of the IP ad-
dress space accurately, with orders of magnitude improvement over previous approaches. Our ex-
periments focus on classifying spammers and legitimate senders on two mail data sets, one with 126
million messages collected over 38 days from the mail servers of a tier-1 ISP, and a second with
28 million messages collected over 6 months from an enterprise mail server. Our experiments also
highlight the importance of allowing the IP address tree to be dynamic, and the resulting view of the
IP address space that we get is both compelling and meaningful.

2 Definitions and Preliminaries
We now present some basic definitions as well as our formal problem statement.

The IP address hierarchy can be naturally interpreted as a full binary tree, as in Fig. 1: the leaves of
the tree correspond to individual IP addresses, and the non-leaf nodes correspond to the remaining
IP prefixes. LetP denote the set of all IP prefixes, andI denote the set of all IP addresses. We also
use termclustersto denote the IP prefixes.

We define anIPTreeTP to be a pruning of the full IP address tree: a tree whose nodes are IP
prefixesP ∈ P , and whose leaves are each associated with a label, i.e., malicious or non-malicious.
An IPtree can thus be interpreted as a classification function for the IP addressesI: an IP addressi
gets the label associated with its longest matching prefix inP . Fig. 1 shows an example of an IPtree.
We define thesizeof an IPtree to be the number of leaves it has. For example, in Fig. 1(a), the size
of the IPtree is 6.

As described in Sec. 1, we focus on online learning in this paper. A typical point of comparison
used in the online learning model is the error of theoptimal offline fixedalgorithm. In this case,
the optimal offline fixed algorithm is the IPtree of a given size k i.e., the tree of sizek that makes
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(a) An example IPTree (b) A real IPTree (Color coding explained in Sec. 5)
Figure 1: IPTrees: example and real. Recall that an IP address is interpreted as a 32-bit string, read
from left to right. This defines a path on the binary tree, going left for 0 and right for 1. An IP prefix
is denoted by IP/n, wheren indicates the number of bits relevant to the prefix.

the fewest mistakes on the entire sequence. However, if the true underlying IPtree may change over
time, a better point of comparison would allow the offline tree to also change over time. To make
such a comparison meaningful, the offline tree must pay an additional penalty each time it changes
(otherwise the offline tree would not be a meaningful point ofcomparison – it could change for each
IP address in the sequence, and thus make no mistakes). We therefore limit the kinds of changes the
offline tree can make, and compare the performance of our algorithm to every IPtree withk leaves,
as a function of the errors it makes and the changes it makes.

We define anadaptive IPtreeof sizek to be an adaptive tree that can (a) grow nodes over time so
long as it never has more thank leaves, (b) change the labels of its leaf nodes, and (c) occasionally
reconfigure itself completely. Our goal is to develop an online algorithmT such that for any se-
quence of IP addresses, (1) foreveryadaptive treeT ′ of sizek, the number of mistakes made byT
is bounded by a (small) function of the mistakes and the changes of types (a), (b), and (c) made by
T ′, and (2)T uses no more thañO(k) space. In the next section, we describe an algorithm meeting
these requirements.

3 Algorithms and Analysis
In this section, we describe our main algorithm TrackIPTree, and present theoretical guarantees on
its performance. At a high-level, our approach keeps a number of experts in each prefix of the
IPtree, and combines their predictions to classify every IPaddress. The inherent structure in the
IPtree allows us to decompose the problem into a number of expert problems, and provide lower
memory bounds and better guarantees than earlier approaches.

We begin with an overview. Define thepath-nodesof an IP address to be the set of all prefixes ofi
in T , and denote this set byPi,T . To predict the label of an IPi, the algorithm looks up all the path-
nodes inPi,T , considers their predictions, and combines these predictions to produce a final label
for i. To update the tree, the algorithm rewards the path-nodes that predicted correctly, penalizes the
incorrect ones, and modifies the tree structure if necessary.

To fill out this overview, there are four technical questionsthat we need to address: (1) Of all the
path-nodes inPi,T , how do we learn the ones that are the most important? (2) How do we learn the
correct label to predict at a particular path-node inPi,T (i.e., positive or negative)? (3) How do we
grow the IPtree appropriately, ensuring that it grows primarily the prefixes needed to improve the
classification accuracy? (4) How do we ensure that the size ofthe IPtree stays bounded bym? We
address these questions by treating them as separate subproblems, and we show how they fit together
to become the complete algorithm in Figure 3.1.

3.1 Subproblems ofTrackIPTree
We now describe our algorithm in detail. Since our algorithmdecomposes naturally into the four
subproblems mentioned above, we focus on each subproblem separately to simplify the presentation.
We use the following notation in our descriptions: Recall from Sec. 2 thatm is the maximum number
of leaves allowed to our algorithm,k is the size of the optimal offline tree, andPi,T denotes the set
of path-nodes, i.e., the prefixes of IPi in the current IPtreeT .

Relative Importance of the Path NodesFirst, we consider the problem of deciding which of the
prefix nodes in the pathPi,T is most important. We formulate this as asleeping experts problem[4,
10]. We set an expert in each node, and call them thepath-node experts, and for an IPi, we consider
the set of path-node experts inPi,T to be the “awake” experts, and the rest to be “asleep”. The

3



x1

x0

x2

x3

x4

x5

x6

y+

y-

(a) Sleeping Experts: Relative Importance (b) Shifting Experts: Determining
of Path-Nodes Node Labels

Figure 2: Decomposing the TrackIPTree Algorithm
sleeping experts algorithm makes predictions using the awake experts, and intuitively, has the goal
of predicting nearly as well as the best awake expert on the instancei 1. In our context, the best
awake expert on the IPi corresponds to the prefix ofi in the optimal IPtree, which remains sleeping
until the IPtree grows that prefix. Fig. 2(a) illustrates thesleeping experts framework in our context:
the shaded nodes are “awake” and the rest are “asleep”.

Specifically, letxt denote the weight of the path-node expert at nodet, and letSi,T =
∑

t∈Pi,T
xt.

To predict on IP addressi, the algorithm chooses the expert at nodet with probabilityxt/Si,T . To
update, the algorithm penalizes all incorrect experts inPi,T , reducing their weightxt to γxt. (e.g.,
γ = 0.8). It then renormalizes the weights of all the experts inPi,T so that their sumSi,T does not
change. (In our proof, we use a slightly different version ofthe sleeping experts algorithm [4]).

Deciding Labels of Individual NodesNext, we need to decide whether the path-node expert at
a noden should predict positive or negative. We use a different experts algorithm to address this
subproblem – theshifting expertsalgorithm [12]. Specifically, we allow each noden to have two
additional experts – a positive expert, which always predicts positive, and a negative expert, which
always predicts negative. We call these expertsnode-labelexperts.

Let yn,+ andyn,− denote the weights of the positive and negative node-label experts respectively,
with yn,− + yn,+ = 1. The algorithm operates as follows: to predict, the node predicts positive with
probabilityyn,+ and negative with probabilityyn,−. To update, when the node receives a label, it
increases the weight of the correct node-label expert byǫ, and decreases the weight of the incorrect
node-label expert byǫ (upto a maximum of 1 and a minimum of 0). Note that this algorithm naturally
adapts when a leaf of the optimal IPtree switches labels – therelevant node in our IPtree will slowly
shift weights from the incorrect node-label expert to the correct one, making an expected1

ǫ
mistakes

in the process. Fig. 2(b) illustrates the shifting experts setting on an IPtree: each node has two
experts, a positive and a negative. Fig. 3 shows how it fits in with the sleeping experts algorithm.

Building Tree Structure We next address the subproblem of building the appropriate structure for
the IPtree. The intuition here is: when a node in the IPtree makes many mistakes, then either
that node has a subtree in the optimal IPtree that separates the positive and negative instances,
or the optimal IPtree must also make the same mistakes. SinceTrackIPTree cannot distinguish
between these two situations, it simply splits any node thatmakes sufficient mistakes. In particular,
TrackIPTree starts with only the root node, and tracks the number of mistakes made at every node.
Every time a leaf makes1

ǫ
mistakes, TrackIPTree splits that leaf into its children, and instantiates

and initializes the relevant path-node experts and node-label experts of the children. In effect, it is
as if the path-node experts of the children had been asleep till this point, but will now be “awake”
for the appropriate IP addresses.

TrackIPTree waits for1
ǫ

mistakes at each node before growing it, so that there is a little resilence
with noisy data – otherwise, it would split a node every time the optimal tree made a mistake, and the
IPtree would grow very quickly. Note also that it naturally incorporates the optimal IPtree growing
a leaf; our tree will grow the appropriate nodes when that leaf has made1

ǫ
mistakes.

Bounding Size of IPtreeSince TrackIPTree splits any node after it makes1

ǫ
mistakes, it is likely

that the IPtree it builds is split much farther than the optimal IPtree – TrackIPTree does not know
when to stop growing a subtree, and it splits even if the same mistakes are made by the optimal
IPtree. While this excessive splitting does not impact the predictions of the path-node experts or the
node-label experts significantly, we still need to ensure that the IPtree built by our algorithm does
not become too large.

1We leave the exact statement of the guarantee to the proof in [23]
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TRACKIPTREE
Input: tree sizem, learning rateǫ, penalty factorγ
Initialize:

SetT := root
InitializeNode(root)

Prediction Rule: Given IPi
//Select a node-label expert
for n ∈ Pi,T

flip coin of biasyn,+

if heads,predict[n] := +
elsepredict[n] := −

//Select a path-node expert
rval := predict[n] with weight

xn/
∑

t∈P
xt

Return rval

Update Rule: Given IPi, labelr
//Update node-label experts
for n ∈ Pi,T

for labelz ∈ {+,−}
if z = r, yn,z := yn,z + ǫ
elseyn,z := yn,z − ǫ

Update Rule (Contd.):
//Update path-node experts
s :=

∑

n∈Pt,T
xn

for n ∈ Pi,T

if predict[n] 6= r,
penalizexn := γxn

mistakes[xn] + +
if mistakes[xn] > 1/ǫ andn

is leaf,GrowTree(n)
Renormalizexn := xn

s
∑

j∈Pi,T

xj

sub INITIALIZE NODE
Input: nodet

xt := 1; yt,+ := yt,− := 0.5
mistakes[t] := 0

sub GROWTREE
Input: leafl

if size(T ) ≥ m
Select nodesN to discard with

paging algorithm
Split leafl into childrenlc, rc.
InitializeNode(lc), InitializeNode(rc)

Figure 3: The Complete TrackIPTree Algorithm

We do this by framing it as a paging problem [20]: consider each node in the IPtree to be a page,
and the maximum allowed nodes in the IPtree to be the size of the cache. The offline IPtree, which
hask leaves, needs a cache of size2k. The IPtree built by our algorithm may have at mostm leaves
(and thus,2m nodes, since it is a binary tree), and so the size of its cache is 2m and the offline
cache is2k. We may then select nodes to be discarded as if they were pagesin the cache once the
IPtree grows beyond2m nodes; so, for example, we may choose the least recently usednodes in
the IPtree, with LRU as the paging algorithm. Our analysis shows that settingm = O( k

ǫ2
log k

ǫ
)

suffices, when TrackIPTree uses FLUSH-WHEN-FULL (FWF) as its paging algorithm – this is a
simple paging algorithm that discards all the pages in the cache when the cache is full, and restarts
with an empty cache. We use FWF here for a clean analysis, and especially since in simple paging
models, many algorithms achieve no better guarantees [20].For our experiments, we implement
LRU, and our results show that this approach, while perhaps not sophisticated, still maintains an
accurate predictive IPtree.

3.2 Analysis
In this section, we present theoretical guarantees on TrackIPTree’s performance. We show our
algorithm performs nearly as well as best adaptivek-IPtree, bounding the number of mistakes made
by our algorithm as a function of the number of mistakes, number of labels changes and number of
complete reconfigurations of the optimal such tree in hindsight.

Theorem 3.1 Fix k. Set the maximum number of leaves allowed to the TrackIPTreealgorithmm to
be 10k

ǫ2
log k

ǫ
. LetT be an adaptivek-IPtree. Let∆T,z denote the number of timesT changes labels

on the its leaves over the sequencez, andRT,z denote the number of times timesT has completely
reconfigured itself overz.

The algorithm TrackIPTreeensures that on any sequence of instancesz, for eachT , the number of
mistakes made by TrackIPTree is at most(1 + 3ǫ)MT,z + (1

ǫ
+ 3)∆T,z + 10k

ǫ3
log k

ǫ
(RT,z + 1) with

probability at least1 −
(

1

k

)
k

2ǫ2 .

In other words, if there is an offline adaptivek-IPtree, that makes few changes and few mistakes
on the input sequence of IP addresses, then TrackIPTree willalso make only a small number of
mistakes. Due to space constraints, we present the proof in the technical report [23].

4 Evaluation Setup
We now describe our evaluation set-up: data, practical changes to the algorithm, and baseline
schemes that compare against. While there are many issues that go into converting the algorithm in
Sec. 3 for practical use, we describe here those most important to our experiments, and defer the
rest to the technical report [23].
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Data We focus on IP addresses derived from mail data, since spammers represent a significant frac-
tion of the malicious activity and compromised hosts on the Internet [6], and labels are relatively
easy to obtain from spam-filtering run by the mail servers. For our evaluation, we consider labels
from the mail servers’ spam-filtering to be ground truth. Anyerrors in the spam-filtering will influ-
ence the tree that we construct and our experimental resultsare limited by this assumption.

One data set consists of log extracts collected at the mail servers of a tier-1 ISP with 1 million
active mailboxes. The extracts contain the IP addresses of the mail servers that send mail to the
ISP, the number of messages they sent, and the fraction of those messages that are classified as
spam, aggregated over 10 minute intervals. The mail server’s spam-filtering software consists of a
combination of hand-crafted rules, DNS blacklists, and Brightmail [1], and we take their results as
labels for our experiments. The log extracts were collectedover 38 days from December 2008 to
January 2009, and contain 126 million IP addresses, of which105 million are spam and 21 million
are legitimate.

The second data set consists of log extracts from the enterprise mail server of a large corporation with
1300 active mailboxes. These extracts also contain the IP addresses of mail servers that attempted to
send mail, along with the number of messages they sent and thefraction of these messages that were
classified spam by SpamAssassin [2], aggregated over 10 minute intervals. The extracts contain 28
million IP addresses, of which around 1.2 million are legitimate and the rest are spammers.

Note that in both cases, our data only contains aggregate information about the IP addresses of the
mail serverssendingmail to the ISP and enterprise mail servers, and so we do not have the ability
to map any information back to individual users of the ISP or enterprise mail servers.

TrackIPTree For the experimental results, we use LRU as the paging algorithm when nodes need
to be discarded from the IPtree (Sec. 3.1). In our implementation, we set TrackIPTree to discard
1% of m, the maximum leaves allowed, every time it needs to expire nodes. The learning rateǫ is
set to 0.05 and the penalty factorγ for sleeping experts is set to 0.1 respectively. Our resultsare not
affected if these parameters are changed by a factor of 2-3.

While we have presented an online learning algorithm, in practice, it will often need to predict
on data without receiving labels of the instances right away. Therefore, we study TrackIPTree’s
accuracy on the following day’s data, i.e., to compute prediction accuracy of dayi, TrackIPTree is
allowed to update until dayi−1. We choose intervals of a day’s length to allow the tree’s predictions
to be updated at least every day.

Apriori Fixed Clusters We compare TrackIPTree to two sets ofapriori fixed clusters: (1) network-
aware clusters, which are a set of unique prefixes derived from BGP routing table snapshots [17], and
(2) /24 prefixes. We choose these clusters as a baseline, as they have been the basis of measurement
studies discussed earlier (Sec. 1), prior work in IP-based classification [19, 24], and are even used
by popular DNS blacklists [3].

We use the fixed clusters to predict the label of an IP in the usual manner: we simply assign an
IP the label of its longest matching prefix among the clusters.Of course, we first need to assign
these clusters their own labels. To ensure that they classify as well as possible, we assign them the
optimal labeling over the data they need to classify; we do this by allowing them to make multiple
passes over the data. That is, for each day, we assign labels so that the fixed clusters maximize their
accuracy on spam for a given required accuracy on legitimatemail 2. It is clear that this experimental
set-up is favourable to the apriori fixed clusters.

We do not directly compare against the algorithm in [11], as it requires every unique IP address in
the data set to be instantiated in the tree. In our experiments (e.g., with the ISP logs), this means that
it requires over 90 million leaves in the tree. We instead focus on practical prior approaches with
more cluster sizes in our experiments.

5 Results
We report three sets of experimental results regarding the prediction accuracy of TrackIPTree using
the experimental set-up of Section 4. While we do not providean extensive evaluation of our al-
gorithm’s computational efficiency, we note that our (unoptimized) implementation of TrackIPTree
takes under a minute to learn over a million IP addresses, on a2.4GHz Sparc64-VI core.

2For space reasons, we defer the details of how we assign this labeling to the technical report [23]
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Figure 4: Results for Experiments 1, 2, and 3

Our results compare the fraction of spamming IPs that the clusters classify correctly, subject to
the constraint that they classify at leastx% legitimate mail IPs correctly (we term this to be the
coverage of the legitimate IPs required). Thus, we effectively plot the true positive rate against
the true negative rate. (This is just the ROC curve with thex-axis reversed, since we plot the true
positive against the true negative, instead of plotting thetrue positive against the false positive.)

Experiment 1: Comparisons with Apriori Fixed Clusters Our first set of experiments compares
the performance of our algorithm with network-aware clusters and /24 IP prefixes. Figs. 4(a) & 4(b)
illustrate the accuracy tradeoff of the three sets of clusters on the two data sets. Clearly, the accuracy
of TrackIPTree is a tremendous improvement on both sets of apriori fixed clusters – for any choice
of coverage on legitimate IPs, the accuracy of spam IPs by TrackIPTree is far higher than the apriori
fixed clusters, even by as much as a factor of 2.5. In particular, note that when the coverage required
on legitimate IPs is95%, TrackIPTree achieves95% accuracy in classifying spam on both data sets,
compared to the35 − 45% achieved by the other clusters.

In addition, TrackIPTree gains this classification accuracy using a far smaller tree. Table 1 shows
the median number of leaves instantiated by the tree at the end of each day. (To be fair to the fixed
clusters, we only instantiate the prefixes required to classify the day’s data, rather than all possible
prefixes in the clustering scheme.) Table 1 shows that the tree produced by TrackIPTree is a factor
of 2.5-17 smaller with the ISP logs, and a factor of 20-100 smaller with the enterprise logs. These
numbers highlight that the apriori fixed clusters are perhaps too coarse to classify accurately in parts
of the IP address space, and also are insufficiently aggregated in other parts of the address space.

Experiment 2: Changing the Maximum Leaves AllowedNext, we explore the effect of changing
m, the maximum number of leaves allowed to TrackIPTree. Fig. 4(c) & 4(d) show the accuracy-
coverage tradeoff for TrackIPTree whenm ranges between 20,000-200,000 leaves for the ISP logs,
and 1,000-50,000 leaves for the enterprise logs. Clearly, in both cases, the predictive accuracy
increases withm only until m is “sufficiently large” – oncem is large enough to capture all the
distinct subtrees in the underlying optimal IPtree, the predictive accuracy will not increase. While
the actual values ofm are specific to our data sets, the results highlight the importance of having a
space-efficient and flexible algorithm – both 10,000 and 100,000 are very modest sizes compared to
the number of possible apriori fixed clusters, or the size of the IPv4 address space, and this suggests
that the underlying decision tree required is indeed of a modest size.

Experiment 3: Does a Dynamic Tree Help?In this experiment, we demonstrate empirically that
our algorithm’s dynamic aspects do indeed significantly enhance its accuracy over static clustering
schemes. The static clustering that we compare to is a tree generated by our algorithm, but one that
learns over the firstz days, and then stays unchanged. For ease of reference, we call such a tree a
z-static tree; in our experiments, we setz = 5 andz = 10. We compare these trees by examining
separately the errors incurred on legitimate and spam IPs.
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ISP Enterprise
TrackIPTree 99942 9963
/24 Prefixes 1732441 1426445

Network-aware 260132 223025

wt Implication Colour
≥ 0.2 Strongly Legit Dark Green
[0, 0.2) Weakly Legit Light Green

(−0.2, 0) Weakly Malicious Blue
≤ −0.2 Strongly Malicious White

Table 1: Sizes of Clustering Schemes
Table 2: Colour coding for IPtree in Fig 1(b)

Fig. 4(e) & 4(f) compare the errors of thez-static trees and the dynamic tree on legitimate and spam
IPs respectively, using the ISP logs. Clearly,bothz-static trees degrade in accuracy over time, and
they do so on both legitimate and spam IPs. On the other hand, the accuracy of the dynamic tree
does not degrade over this period. Further, the in error grows with time; after 28 days, the 10-static
tree has almost a factor of 2 higher error on both spam IPs and legitimate IPs.

Discussion and ImplicationsOur experiments demonstrate that our algorithm is able to achieve
high accuracy in predicting legitimate and spam IPs, e.g., it can predict95% of the spam IPs cor-
rectly, when misclassifying only5% of the legitimate IPs. However, it does not classify the IPs
perfectly. This is unsurprising – achieving zero classification error in these applications is practi-
cally infeasible, given IP address dynamics [25]. Nevertheless, our IPtree still provides insight into
the malicious activity on the Internet.

As an example, we examine a high-level view of the Internet obtained from our tree, and its impli-
cations. Fig. 1(b) visualizes an IPtree on the ISP logs with 50,000 leaves. It is laid out so that the
root prefix is near the center, and the prefixes grow their children outwards. The nodes are coloured
depending on their weights, as shown in Table 2: for nodet, definewt =

∑

j∈Q xj(yj,+ − yj,−),
whereQ is the set of prefixes of nodet (including nodet itself. Thus, the blue central nodes are the
large prefixes (e.g., /8 prefixes), and the classification they output is slightly malicious; this means
that an IP address without a longer matching prefix in the treeis typically classified to be malicious.
This suggests, for example, that an unseen IP address is typically classified as a spammer by our
IPtree, which is consistent with the observations of network administrators. A second observation
we can make is that the tree has many short branches as well as long branches, suggesting that some
IP prefixes are grown to much greater depth than others. This might happen, for instance, if active IP
addresses for this application are not distributed uniformly in the address space (and so all prefixes
do not need to be grown at uniform rates), which is also what wemight expect to see based on prior
work [16].

Of course, these observations are only examples; a completeanalysis of our IPtree’s implications is
part of our future work. Nevertheless, these observations suggest that our tree does indeed capture
an appropriate picture of the malicious activity on the Internet.

6 Other Related Work
In the networking and databases literature, there has been much interest in designing streaming
algorithms to identify IP prefixes with significant network traffic [7, 9, 27], but these algorithms
do not explore how to predict malicious activity. Previous IP-based approaches to reduce spam
traffic [22, 24], as mentioned earlier, have also explored individual IP addresses, which are not
particularly useful since they are so dynamic [15, 19, 25]. Zhang et al [26] also examine how to
predict whether known malicious IP addresses may appear at agiven network, by analyzing the
co-occurence of all known malicious IP addresses at a numberof different networks. More closely
related is [21], who present algorithms to extract prefix-based filtering rules for IP addresses that may
be used in offline settings. There has also been work on computing decision trees over streaming
data [8,13], but this work assumes that data comes from a fixeddistribution.

7 Conclusion
We have addressed the problem of discovering dynamic malicious regions on the Internet. We model
this problem as one of adaptively pruning a known decision tree, but with the additional challenges
coming from real-world settings – severe space requirements and a changing target function. We
developed new algorithms to address this problem, by combining “experts” algorithms and online
paging algorithms. We showed guarantees on our algorithm’sperformance as a function of the best
possible pruning of a similar size, and our experimental results on real-world datasets are orders of
magnitude better than current approaches.

AcknowledgementsWe are grateful to Alan Glasser and Gang Yao for their help with the data
analysis efforts.
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