
Paragraph: Thwarting Signature Learning by Training
Maliciously

James Newsome1, Brad Karp2, and Dawn Song1

1 Carnegie Mellon University
2 University College London

Abstract. Defending a server against Internet worms and defending a user’s email in-
box against spam bear certain similarities. In both cases, astream ofsamplesarrives,
and aclassifiermust automatically determine whether each sample falls into a malicious
target class (e.g.,worm network traffic, or spam email). Alearner typically generates
a classifier automatically by analyzing two labeled training pools: one of innocuous
samples, and one of samples that fall in the malicious targetclass.
Learning techniques have previously found success in settings where the content of
the labeled samples used in training is either random, or even constructed by a helpful
teacher, who aims to speed learning of an accurate classifier. In the case of learning clas-
sifiers for worms and spam, however, anadversarycontrols the content of the labeled
samples to a great extent. In this paper, we describe practical attacks against learning,
in which an adversary constructs labeled samples that, whenused to train a learner, pre-
vent or severely delay generation of an accurate classifier.We show that even adelusive
adversary, whose samples are all correctly labeled, can obstruct learning. We simulate
and implement highly effective instances of these attacks against the Polygraph [15]
automatic polymorphic worm signature generation algorithms.

Key words: automatic signature generation, machine learning, worm, spam

1 Introduction

In a number of security applications, alearner analyzes a pool of samples that fall in some
malicioustargetclass and a pool of innocuous samples, and must produce aclassifierthat can
efficiently and accurately determine whether subsequent samples belong to the target class.
High-profile applications of this type include automatic generation of worm signatures, and
automatic generation of junk email (spam) classifiers.

Prior to the deployment of such a system, samples in the target class are likely to include
a number of distinguishing features that the learner can find, and that the classifier can use
to successfully filter target-class samples from a stream ofmixed target-class and innocuous
samples. Before the wide deployment of automatic spam classification, spam emails often
contained straightforward sales pitches. Likewise, as no automatic worm signature generation
system has yet been widely deployed, all instances of a particular worm’s infection attempts
contain nearly an identical payload. The first generation ofautomatic signature generation
systems was highly successful against thesenon-adaptiveadversaries.

Once such a system is widely deployed, however, an incentiveexists forelusiveadver-
saries to evade the generated classifiers. We observe this phenomenon today because of the
wide-spread deployment of spam classifiers. Senders of spamemploy a variety of techniques
to make a spam email look more like a legitimate email, in an attempt to evade the spam clas-
sifier [6]. Similarly, while worm signature generation systems are not yet widely deployed,
it is widely believed that once they are, worm authors will use well knownpolymorphism
techniques to minimize the similarity between infection payloads, and thus evade filtering by
worm signatures.

In the case of worm signature generation we have a significantadvantage: a worm infec-
tion attemptmustcontain specific exploit content to cause the vulnerable software to begin

II

executing the code contained in the payload. Further, thevulnerability,not the worm’s author,
determines this specific exploit content. Newsomeet al. [15] showed that, for many vulner-
abilities, messages that exploit a particular vulnerability must contain some set ofinvariant
byte strings, and that it is possible to generate an accurateand efficient signature based on
this set of byte strings, even if the rest of the worm’s payload is maximally varying—that is,
contains no persistent patterns.

Unfortunately, such an elusive adversary is not the worst case. In this work, we empha-
size that these applications attempt to learn a classifier from samples that areprovided by a
malicious adversary. Most learning techniques used in these applications do nottarget this
problem setting. In particular, most machine learning algorithms are designed and evaluated
for cases where training data is provided by an indifferent entity (e.g.,nature), or even by a
helpful teacher. However, in the applications under discussion, training data is provided by a
maliciousteacher.

Perdisciet al. [18] demonstrate that it is not sufficient for the learner to toleraterandom
noise (mislabeled training samples) in the training data. In particular, Perdisciet al.describe
noise-injection attacks on the Polygraph suite of automatic worm signature generation algo-
rithms [15], through which an attacker can prevent these algorithms from generating an ac-
curate classifier. These attacks work by causing the Polygraph learner to use specially crafted
non-worm samples as target-class-labeled (worm-labeled)training data. This type of attack
is of concern when the initial classifier that identifies target-class samples for use in training
is prone to false positives. Such an attack can be avoided by using asoundinitial classifier to
ensure that non-target-class samples cannot be mislabeledinto the target-class training data.
In the case of automatic generation of worm signatures, hostmonitoring techniques such
as dynamic taint analysis [3, 4, 16, 23] can prevent such mislabeling, as they reliably detect
whether the sample actually results in software being exploited.

In this work, we show that there is an even more severe consequence to training on data
provided by a malicious teacher. We show that adelusive1 adversary can manipulate the train-
ing data to prevent a learner from generating an accurate classifier,even if the training data
is correctly labeled. As a concrete demonstration of this problem, we analyze several such
attacks that are highly effective against the Polygraph automatic worm signature generation
algorithms. We also illustrate the generality of this problem by describing how these same
attacks can be used against the Hamsa [9] polymorphic worm signature generation system,
and against Bayesian spam classifiers.

Our contributions are as follows:

– We define the classifier generation problem as a learning problem in an adversarial envi-
ronment.

– We describe attacks on learning classifier generators that involve careful placement of
features in the target-class training data, the innocuous training data, or both, all toward
forcing the generation of a classifier that will exhibit manyfalse positives and/or false
negatives.

– We analyze and simulate these attacks to demonstrate their efficacy in the polymorphic
worm signature generation context. We also implement them,to demonstrate their prac-
ticality.

We conclude that the problem of a delusive adversary must be taken into account in the
design of classifier generation systems to be used in adversarial settings. Possible solutions
include designing learning algorithms that are robust to maliciously generated training data,
training using malicious data samplesnot generated by a malicious source, and performing
deeper analysis of the malicious training data to determinethe semantic significance of the
features being included in a classifier, rather than treating samples as opaque “bags of bits.”

We proceed in the remainder of this paper as follows. In Section 2, we define the classifier
generation problem in detail. We next describe attacks against learning classifier generators in

1 delusive: Having the attribute of deluding, . . . , tending todelude, deceptive [17].

III

Sections 3 and 4. We discuss implications of these attacks, both for worm signature generation
and for spam filtering, in Section 5. After reviewing relatedwork in Section 6, we conclude
in Section 7.

2 Problem Definition: Adversarial Learning

Samples
Unlabeled

Pool

Classifier

Innocuous
Pool

Classifier
LearnerLabeled

Samples
Initial

Suspicious

Fig. 1.Schematic of a learner, which uses innocuous and suspicioustraining pools to generate an accu-
rate classifier.

We now elaborate on the learning model mentioned in the previous section, as followed by
Polygraph for worm signature generation, and by Bayesian systems for spam filter generation,
with the aim of illuminating strategies an adversary may adopt in an attempt to cause learning
to fail. We begin by describing the learning model, and examining the criteria that must be
met for learning to succeed. We then consider the assumptions the learning model makes, and
why they may not always hold in practice. Finally, we describe general strategies forforcing
the assumptions the model makes to be violated.

2.1 Learning Model

Identifying worms or spam so that they may be filtered is at itsheart a classification problem:
we seek a classifier that, given a sample, will label that sample as being of thetarget class
(e.g.,a worm infection attempt, or a spam email) or as innocuous. One may derive a classifier
automatically bylearningone. Overall, learning involves initially labeling some set of sam-
ples to train alearner, which, based on their content, generates a classifier. Thisprocess is
depicted in schematic form in Figure 1.

The raw input to a learning system consists ofunlabeled samples.In the case of worm
signature generation, these are individual network flow payloads observed at a network mon-
itoring point; in the case of Bayesian spam filter generation, they are individual email mes-
sages arriving in a user’s inbox. Note that an adversary may influence the content of these
unlabeled samples to a varying extent; we return to this point later in this section.

The unlabeled samples are first labeled by an initial classifier. Samples labeled as being
in the target class are placed in thesuspicious pool. Samples labeled asnotbeing in the target
class are placed in theinnocuous pool. It may seem circular to begin the process of deriving
a classifier with a classifier already in hand. It is not. The classifier used to perform the initial
labeling of samples typically has some combination of properties that makes it unattractive
for general use, such as great computational cost or inaccuracy. We consider this classifier
used for the initial labeling of samples below.

Once these samples have been labeled, the learner analyzes thefeaturesfound in the sam-
ples in each pool, and produces a classifier. Machine learning allows a very broad definition
of what may constitute a feature. In this work we focus on the case where each feature is the
presence or absence of atoken, or contiguous byte string, though our results are generalizable
to other types of features.

FeedbackNote that throughout this paper, we optimistically assume that the system uses
an intelligent feedback loop. For example, if the system collects 10 target-class samples,

IV

generates a classifier, and later collects 10 new target-class samples, it generates an updated
classifier using all 20 samples in its suspicious pool, rather than generating a new classifier
using only the latest 10. How to achieve this property is application-specific, and outside the
scope of this work. This property is crucially important, asotherwise the attacker can prevent
the learner fromeverconverging to a correct classifier.

2.2 Successful Learning

To understand how an adversary might thwart learning, we must first understand what con-
stitutes successful learning. Using labeled pools of samples, the learner seeks to generate a
classifier that meets several important criteria. First, the classifier should be computationally
efficient; it should be able to label samples at their full arrival rate (in the case of worm fil-
tering, at a high link speed). The classifier should also exhibit no false negatives; it should
correctly classify all target-class samples as such. It should also exhibit very few or no false
positives; it should not classify non-target-class samples as being in the target class.

The learner must be able to generate an accurate classifier using a reasonably small num-
ber of labeled target-class samples. An adversary can severely undermine the usefulness of
the system by increasing the number of labeled target-classsamples necessary to generate an
accurate classifier. This is especially true in the case of automatic worm signature generation,
where a worm infects ever-more vulnerable hosts while training data is being collected.

2.3 Limitations of Initial Classifier

Let us now return to the initial classifier used to label samples, and the properties that make
it inappropriate for general use (and thus motivate the automated derivation of a superior
classifier through learning). First, the initial classifiermay be too expensive to use on all
samples. For example, systems like TaintCheck [16] and the execution monitoring phase of
Vigilante [3] identify flows that cause exploits very accurately, but slow execution of a server
significantly. In the case of spam, it is most often a user who initially labels inbound emails
as spam or non-spam. Clearly, the user is an “expensive” classifier. In both these application
domains, the aim is to use the expensive classifier sparinglyto train a learner to generate a far
less expensive classifier.

In addition, the classifier used to label samples initially is often error-prone; it may suffer
from false positives and/or false negatives. For example, classifying all samples that originate
from a host whose behavior fits some coarse heuristic (e.g.,originating more than a thresh-
old number of connections per unit time) risks flagging innocuous samples as suspicious. A
coarse heuristic that errs frequently in the opposite direction (e.g.,classifying as suspicious
only those samples from source addresses previously seen toport scan) risks flagging suspi-
cious samples as innocuous (e.g.,a hit-list worm does not port scan, but is still in the target
class).

2.4 Assumptions and Practice

Given that the initial classifier is error-prone, consider the content of the two labeled pools
it produces. Ideally, the innocuous pool contains legitimate traffic that exactly reflects the
distribution of current traffic. In reality, though, it may not. First, because the classifier used
in initial labeling of samples is imperfect, the innocuous pool might well include target-class
traffic not properly recognized by that classifier. Moreover, the innocuous pool may contain
traffic that is not target-class traffic, but not part of the representative innocuous traffic mix;
an adversary may send non-target-class traffic to cause thissort of mislabeling. Finally, the
innocuous pool may not reflectcurrent traffic; it may be sufficiently old that it does not
contain content common in current traffic.

The suspicious pool is essentially a mirror image of the innocuous pool. Ideally, it con-
tains only samples of the target class. But as before, the flawed classifier may misclassify

V

innocuous traffic as suspicious, resulting in innocuous traffic in the suspicious pool. Addi-
tionally, an adversary may choose to send non-target-classtraffic in such a way as to cause
that traffic (which is innocuous in content) to be classified as suspicious.

Formal proofs of desirable properties of machine learning algorithms (e.g.,fast conver-
gence to an accurate classifier with few labeled samples) tend to assume that the features
present in samples are determined randomly, or in some applications, that ahelpful teacher
designs the samples’ content with the aim of speeding learning. We note that using learning
to generate classifiers for worms constitutes learning withamalicious teacher;that is, the ad-
versary is free to attempt to construct target-class samples with the aim of thwarting learning,
and to attempt to force the mislabelings described above to occur.

2.5 Attack Taxonomy

There are a number of adversarial models to consider. In particular, there are three potential
adversary capabilities that we are interested in:

– Target feature manipulation.The adversary has some power to manipulate the features
in the target-class samples. Some features arenecessaryfor the target-class samples to
accomplish their purpose (e.g., successfully hijack program execution in a worm sample,
or entice the reader to visit a web-site in a spam email). There are a variety of techniques
to minimize or obfuscate these necessary features, such as worm polymorphism. A less-
studied technique that we investigate is the inclusion of additional,spurious, features in
the target-class samples, whose sole purpose is to mislead the learner.

– Suspicious pool poisoning.The adversary may attempt to fool the initial classifier, such
that non-target-class samples are put into the suspicious pool. These samples may be
specially constructed to mislead the learner.

– Innocuous pool poisoning.The adversary may attempt to place samples into the innocu-
ous pool. These could be target-class samples, or non-target-class samples that nonethe-
less mislead the learner.

We propose two types of attack that the adversary can performusing one or more of the
above techniques:

– Red herring attacks.The adversary incorporates spurious features into the target-class
samples to cause the learner to generate a classifier that depends on those spurious fea-
tures instead of or in addition to the necessary target-class features. The adversary can
evade the resulting classifier by not including the spuriousfeatures in subsequently gen-
erated target-class samples.

– Inseparability attacks.The adversary incorporates features found in the innocuouspool
into the target-class samples in such a way as to make it impossible for the learner to
generate a classifier that incurs both few false positives and few false negatives.

In this work we demonstrate highly effective attacks of bothtypes that assume only a
delusive adversary—one who provides the learner with correctly labeled training data, but
who manipulates the features in the target-class samples tomislead the learner. We further
demonstrate how an adversary with the ability to poison the suspicious pool, the innocuous
pool, or both, can more easily perform inseparability attacks.

Having sketched these strategies broadly, we now turn to describing the attacks based on
them in detail.

3 Attacks on Conjunction Learners

One way of generating a classifier is to identify a set of features that appears in every sample
of the target class. The classifier then classifies a sample aspositive if and only if it contains
every such feature.

VI

We construct two types of red herring attacks against learners of this type. We use the
Polygraph conjunction learner as a concrete example for analysis [15]. In the Polygraph con-
junction learner, the signature is the set of features that occur in every sample in the malicious
training pool.2 In Section 5 we discuss the effectiveness of these attacks against Hamsa [9], a
recently proposed Polygraph-like system. We show that the attacks described here are highly
effective, even under the optimistic assumption that the malicious training pool contains only
target-class samples.

In Section 3.3, we show that even in a highly optimistic scenario, a polymorphic worm
that Polygraph could stop after only .5% of vulnerable hostsare infected can use these attacks
to improve its infection ratio to 33% of vulnerable hosts.

3.1 Attack I: Randomized Red Herring Attack

Attack Description The learner’s goal is to generate a signature consisting only of features
found in every target-class sample. In theRandomized Red Herringattack, the attacker in-
cludes unnecessary, orspurious, features in some target-class samples, with the goal of trick-
ing the learner into using those features in its signature. As a result, target-class samples
that donot include the set of spurious features that are in the signature are able to evade the
signature.

The attacker first chooses a set ofα spurious features. The attacker constructs the target-
class samples such that each one contains a particular spurious feature with probabilityp. As
a result, the target-class samples in the learner’s malicious pool will all have some subset of
theα spurious features in common, and those spurious features will appear in the signature.
The signature will then have false negatives, because many target-class samples will not have
all of those features.

AnalysisWe first find how selection ofα andp affect the expected false negative rate.

Theorem 1 The expected false negative rate F[s] for a signature generated from s target-
class samples, where each target-class sample has probability p of including each ofα spu-
rious features, is F[s] = 1− pα ps

.

Derivation The expected number of spurious features that will be included in a signature
after collectings samples isσ = α ps. The chance of allσ of those spurious features being
present in any given target-class samples ispσ . Hence, the expected false negative rate of the
signature isy = 1− pσ , which we rewrite asy = 1− pα ps

.
The attacker has two parameters to choose: the number of spurious featuresα, and the

probability of a spurious feature occurring in a target-class samplep. The attacker will use as
high anα as is practical, often limited only by the number of additional bytes that the attacker
is willing to append.

The ideal value ofp is not clear by inspection. A higherp results in more spurious fea-
tures incorporated into the signature, but it also means that the spurious features that do get
included in the classifier are more likely to occur in other target-class samples. We find the
best value ofp by finding the roots of the derivative:dy

dp = −α pα ps+s−1(sln(p)+ 1). There
are two roots.p = 0 minimizes false negatives (it is equivalent to not performing the attack
at all), andp = e−

1
s maximizes false negatives.

Theorem 2 The value of p that maximizes the false negative rate in the Randomized Red
Herring attack is: p= e−

1
s .

2 In Section 5, we show that the hierarchical clustering algorithm used by Polygraph to tolerate noise
does not protect against these attacks.

VII

Thep that generates the highest false negative rate depends on the number of target-class
samples seen by the learner,s. Hence, the optimal value ofp depends on the exact goals of
the attacker. For a worm author, one way to choose a value ofp would be to set a goal for
the number of machines to compromise before there is an effective classifier, and calculate
the number of positive samples that the learner is likely to have gathered by that time, based
on the propagation model of his worm and the deployment of thelearner, and then setp to a
value that ensures there are still a large number of false negatives at that time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

F
al

se
 n

eg
at

iv
e

ra
te

 y

Number of training samples s

Theory p=.900
Theory p=.995
Theory p=.999

Eval p=.900
Eval p=.995

Fig. 2.Randomized Red Herring attack.α = 400

We implemented a version of the Randomized Red Herring attack based on this model.
We took a real buffer-overflow exploit against the ATPhttpd web server [19], filled the attack-
code with random bytes to simulate polymorphic encryption and obfuscation, and replaced
the 800 bytes of padding with 400 unique two-byte spurious features. Specifically, we set
each two-byte token to the binary representation of its offset with probabilityp, and to a
random value with probability 1− p. Note that the number of spurious features used here
is conservative. In this attack, the 800 padding bytes were already used, because they were
necessary to overflow the buffer. The attacker could easily includemorebytes to use as spu-
rious features. For example, he could include additional HTTP headers for the sole purpose
of filling them with spurious features.

Figure 2 shows the predicted and actual false negative ratesas the number of training
samples increases, for several values ofp. We used values that maximized the false negative
rate whens= 10 (p = .900), whens= 200 (p = .995), and whens= 500 (p = .999). For
each data point, we generates worm samples, and use the Polygraph conjunction learner
to generate a classifier. We then generate another 1000 worm samples to measure the false
negative rate. There are two things to see in this graph. First, our experimental results confirm
our probability calculations. Second, the attack is quite devastating. Low values ofp result in
very high initial false negatives, while high values ofp prevent a low-false-negative signature
from being generated until many worm samples have been collected.

3.2 Attack II: Dropped Red Herring Attack

Attack description In the Dropped Red Herring attack, the attacker again chooses a set ofα
spurious features. Initially, he includes allα features in every target-class sample. As a result,
the target-class samples in the learner’s malicious training pool will all have allα spurious
features, and allα spurious features will be included in the signature.

Once the signature is in place, all the attacker needs to do toevade the signature is to
stop includingoneof the spurious features in subsequent target-class samples. The signature

VIII

will have a 100% false negative rate until the learner sees a target-class sample missing the
spurious feature, and deploys an updated signature that no longer requires that feature to
be present. At that point, the attacker stops including another spurious feature. The cycle
continues until the attacker has stopped including all of the spurious features.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

E
xp

ec
te

d
F

al
se

 n
eg

at
iv

e
ra

te
 y

Number of training samples

Randomized p=.900
Randomized p=.995
Randomized p=.999

Dropped

Fig. 3. Dropped Red Herring compared to Randomized Red Herring,α = 400

Attack analysisFor sake of comparison to the Randomized Red Herring attack,assume that
the attacker stops including a single spurious feature the instant that an updated signature is
deployed. Also assume that the learner deploys a new signature each time it collects a new
worm sample, since each successive sample will have one fewer spurious feature than the
last. In that case, the classifier will have 100% false negatives untilα positive samples have
been collected.

Theorem 3 The false negative rate F[s] for the signature generated after s target-class sam-
ples have been collected is

F[s] =

{

100%i f s < α
0% i f s≥ α

With these assumptions, the Dropped Red Herring attack is compared to the Randomized
Red Herring attack in Figure 3. When the attack is executed inthis way, and there are a
moderate number of spurious features, the attack can be quite devastating. The generated
signatures are useless until allα features have been eliminated from the signature.

While the Dropped Red Herring attack is far more effective than the Randomized Red
Herring attack (until the learner has dropped allα spurious features from the signature), the
Randomized Red Herring attack has one important advantage:it is simpler to implement. The
Dropped Red Herring attack must interact with the signaturelearning system, in that it must
discover when a signature that matches the current target-class samples has been published,
so that it can drop another feature, and remain unfiltered. There is no such requirement of the
Randomized Red Herring attack. This is not to say that the Dropped Red Herring attack is
impractical; the attacker has significant room for error. While dropping a feature prematurely
will ‘waste’ a spurious feature, there is little or no penalty for dropping a feature some time
after an updated signature has been deployed.

3.3 Attack Effectiveness

We show that even with an optimistic model of a distributed signature generation system, and
a pessimistic model of a worm, employing the Randomized Red Herring or Dropped Red

IX

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 1000 2000 3000 4000 5000 6000 7000 8000

V
ul

ne
ra

bl
e

H
os

ts
 In

fe
ct

ed

Worm samples seen by learner (s)

No defense
Dropped RH

Randomized RH (p=.999)
Randomized RH (p=.995)
Randomized RH (p=.900)

Maximally Varying Polymorphic

Fig. 4. Worm propagation. L=1000, V=1000000,α = 400

Herring attack delays the learner enough to infect a large fraction of vulnerable hosts before
an accurate signature can be generated.

We assume that the learner is monitoringL addresses. Each time the worm scans one of
these addresses, the learner correctly identifies it as a worm, and instantaneously updates and
distributes the signature. At that point, any scan of any vulnerable host has probabilityF [s]
of succeeding (the false negative rate of the current signature). There are several optimistic
assumptions for the learner here, most notably that updatedsignatures are distributedinstan-
taneously. In reality, distributing even a single signature to all hosts in less than the time it
takes to infect all vulnerable hosts is a challenge [22].3

We assume that the worm scans addresses uniformly at random.In reality, there are sev-
eral potential strategies a worm author might use to minimize the number of samples seen by
the learner. An ideally coordinated worm may scan every address exactly once, thus minimiz-
ing the number of samples sent to any one of the learner’s addresses, and eliminating ‘wasted’
scans to already-infected hosts. The worm could further improve this approach by attempting
to order the addresses by their likelihood of being monitored by the learner, scanning the least
likely first.

We model the worm by estimating the number of additional vulnerable hosts infected
in-between the learner receiving new worm samples. Note that because we assume signature
updates are instantaneous, the scan rate of the worm is irrelevant. Intuitively, both the rate of
infection and the rate of the learner receiving new samples are proportional to the scan rate,
thus canceling each other out.

Theorem 4 For a worm scanning uniformly at random, where there are V vulnerable hosts,
L addresses monitored by the learner, and N total hosts, the expected number of infected hosts
I after s worm samples have been seen by the learner is:

I [s] = I [s−1]+ (V− I [s−1])

(

1−

(

1−
F[s−1]

N

)(N/L)
)

Derivation The expected number of worm scans in-between the learner receiving a new
worm sample is 1

P(scan is seen by learner)
= N

L .

3 The Dropped Red Herring attack in particular is much more devastating when taking the signature
generation and distribution time into account, since the next spurious feature is not revealed before
an updated signature is distributed. Hence, a worm usingα spurious features is allowed to propagate
freely for at leastα times the time needed to generate and distribute a signature.

X

R
at

e

False Positive Rate
Innocuous Pool

Threshold

F%

100%
Suspicious Pool

False Negative Rate

TzfnTzfpτ

Fig. 5. Training data distribution graph, used to
setτ. τ couldbe set to perfectly classify training
data.

R
at

e

False Positive Rate
Innocuous Pool

Threshold

F%

100% False Negative Rate
Suspicious Pool

Tzfn Tzfpτ

Fig. 6. Overlapping training data distribution
graph. No value ofτ perfectly classifies train-
ing data.

I [s] = I [s−1]+ (# vulnerable uninfected hosts)P(host becomes infected)
I [s] = I [s−1]+ (V− I [s−1])(1−P(host does not become infected))

I [s] = I [s−1]+ (V− I [s−1])(1−P(scan does not infect host)(# scans))
I [s] = I [s−1]+ (V− I [s−1])(1− (1−P(scan infects host))(# scans))
I [s] = I [s−1]+ (V− I [s−1])(1− (1−P(scan contacts host)P(scan not blocked))(# scans))
I [s] = I [s−1]+ (V− I [s−1])(1− (1− 1

N F[s−1])(N/L))

In Figure 4, we model the case ofV = one million vulnerable hosts,L = one thousand
learner-monitored addresses, andN = 232 total addresses. In the case where the worm is
maximally-varying polymorphic, we assume that the learnerneeds five samples to gener-
ate a correct signature. In that case, only 4,990 (.0499%) vulnerable hosts are infected be-
fore the correct signature is generated, stopping further spread of the worm. By employing
the Dropped Red Herring attack, the worm author increases this to 330,000 (33.0%). The
Randomized Red Herring attack is only slightly less effective, allowing the worm to infect
305,000 (30.5%) vulnerable hosts usingp = .999.

Given that the Dropped Red Herring and Randomized Red Herring attacks allow a worm
to infect a large fraction of vulnerable hosts even under this optimistic model, it appears that
the Conjunction Learner is not a suitable signature generation algorithm for a distributed
worm signature generation system.

4 Attacks on Bayes Learners

Bayes learners are another type of learner used in several adversarial learning applications,
including worm signature generation and spam filtering. We present several practical attacks
against Bayes learners, which can prevent the learner fromevergenerating an accurate signa-
ture, regardless of how many target-class samples it collects. As a concrete example, we use
Polygraph’s implementation of aNaiveBayes learner. That is, a Bayes learner that assumes
independence between features. Non-Naive Bayes learners are not as commonly used, due
partly to the much larger amount of training data that they require. We believe that the attacks
described here can also be applied to other Bayes learners, possibly even non-naive ones that
do not assume independence between features.

4.1 Background on Bayes Learners

In the following discussion, we use the notationP(x|+) to mean the probability that the
feature or set of featuresx occurs in malicious samples, andP(x|−) to denote the probability
that it occurs in innocuous samples. This learner can be summarized as follows:

XI

– The learner identifies a set of tokens,σ , to use as features.σ is the set of tokens that
occur more frequently in the suspicious pool than in the innocuous pool. That is,∀σ i ∈
σ ,P(σ i |+) > P(σ i |−). This means that the presence of someσ i in a sample to be clas-
sified can neverlower the calculated probability that it is a worm.

– Classifies a sample as positive (i.e., in the target class) wheneverP(γ|+)
P(γ|−) > τ whereτ is a

threshold set by the learner, andγ is the subset ofσ that occurs in the particular sample.
We refer toP(γ|+)

P(γ|−)
as theBayes score, denoted score(γ)

– We assume conditional independence between features. Hence, P(γ|+)
P(γ|−) = ∏ P(γi |+)

P(γi |−)

– P(σ i |−) is estimated as the fraction of samples in the innocuous poolcontainingσ i .
– P(σ i |+) is estimated as the fraction of samples in the suspicious pool containingσ i .
– τ is chosen as the value that achieves a false positive rate of no more thanF% in the

innocuous pool.

Setting theτ Threshold The attacks we describe in this section all involve making itdifficult
or impossible to choose a good matching threshold,τ. For clarity, we describe the method for
choosingτ in more detail.

After the learner has chosen the feature setσ and calculatedP(σ i |+)
P(σ i |−)

for each feature,

it calculates the Bayes scoreP(σ |+)
P(σ |−)

for each sample in the innocuous pool and suspicious
pool, allowing it to create thetraining data distribution graphin Figure 5. The training data
distribution graph shows, for every possible threshold, what the corresponding false positive
and false negative rates would be in the innocuous and suspicious training pools. Naturally, as
the threshold increases, the false positive rate monotonically decreases, and the false negative
rate monotonically increases. Note that Figure 5 and other training data distribution graphs
shown here are drawn for illustrative purposes, and do not represent actual data.

There are several potential methods for choosing a threshold τ based on the training
data distribution graph. The method described in Polygraph[15] is to choose the value that
achieves no more thanF% false positives in the innocuous pool. One alternative considered
was to setτ to Tz f p, the lowest value that achieves zero false positives in the innocuous pool.
However, in the examples studied, a few outliers in the innocuous pool made it impossible
to have zero false positives without misclassifying all of the actual worm samples, as in
Figure 6. Of course, a highly false-positive-averse user could setF to 0, and accept the risk
of false negatives.

Another tempting method for choosingτ is to set it toTz f n, the highest value that achieves
zero false negatives in the suspicious pool. However, we show in Section 4.2 that this would
make the Bayes learner vulnerable to a red herring attack.

4.2 Dropped Red Herring and Randomized Red Herring Attacks are Ineffective

Dropped Red Herring Attack The method just described for choosingτ may seem unin-
tuitive at first. However, it was carefully designed to prevent Dropped Red Herring attacks,
as illustrated in Figure 7. Suppose thatτ was set toTz f n, the threshold just low enough to
achieve zero false negatives in the training data. This may seem more intuitive, since it re-
duces the risk of false positives as much as possible while still detecting all positive samples
in the malicious pool.

Now suppose that the attacker performs the Dropped Red Herring attack. Since the spuri-
ous features occur in 100% of the target-class samples, theywill be used in the feature setσ .
Since each target-class sample in the malicious pool now hasmore incriminating features, the
Bayes score of every target-class sample in the suspicious pool increases, causing the false
negative curve to be artificially shifted to the right.4

4 The false positive curve may also shift towards the right. Weaddress this in Section 4.3.

XII

F%

R
at

e

False Positive Rate
Innocuous Pool

100%

Threshold τTzfp Tzfn Tzfn’ Tzfn’’

Suspicious Pool
False Negative Rate

Fig. 7. Dropped Red Herring Attack. Spurious
tokens artificially shift false negative curve to
the right. It shifts back to the left when worm
samples without the spurious tokens are added
to the suspicious pool.

R
at

e

False Positive Rate
Innocuous Pool

100%

F%

Threshold τ τ ’

Suspicious Pool
False Negative Rate

Fig. 8. Correlated Outlier attack

If the learner were to setτ to T ′′
z f n (see Figure 7), then the attacker could successfully

perform the Dropped Red Herring attack. When a target-classsample includes one less spu-
rious feature, its Bayes score becomes less thanT ′

z f n, whereT ′
z f n < T ′′

z f n. Hence it would be
classified as negative. Eventually the learner would get target-class samples without that spu-
rious feature in its malicious pool, causing the false negative curve to shift to the left, and the
learner could update the classifier with a threshold ofT ′

z f n. At that point the attacker could
stop including another feature.

However, settingτ to the value that achieves no more thanF% false positives is robust
to the Dropped Red Herring attack. Assuming that the spurious features do not appear in the
innocuous pool, the false positive curve of the training data distribution graph is unaffected,
and hence the thresholdτ is unaffected.

Randomized Red Herring Attack The Randomized Red Herring attack has little effect on
the Bayes learner. The Bayes score for any given target-class sample will behigherdue to the
inclusion of the spurious features. The increase will vary from sample to sample, depending
on which spurious features that sample includes. However, again assuming that the spurious
features do not appear in the innocuous pool, this has no effect onτ. Hence, the only potential
effect of this attack is todecreasefalse negatives.

4.3 Attack I: Correlated Outlier Attack

Unfortunately, we have found an attack thatdoeswork against the Bayes learner. The at-
tacker’s goal in this attack is to increase the Bayes scores of samples in the innocuous pool,
so as to cause significant overlap between the training data false positive and false nega-
tive curves. In doing so, the attacker forces the learner to choose between significant false
positives, or 100% false negatives, independently of the exact method chosen for setting the
thresholdτ.

Attack Description The attacker can increase the Bayes score of innocuous samples by using
spurious features in the target-class samples, which also appear in some innocuous samples.
By including only a fractionβ of theα spurious features,S, in any one target-class sample,
innocuous samples that have allα spurious features can be made to have a higher Bayes score
than the target-class samples.

The result of the attack is illustrated in Figure 8. The spurious features in the target-
class samples cause the false negative curve to shift to the right. The innocuous samples
that contain the spurious features result in a tail on the false positive curve. The tail’s height
corresponds to the fraction of samples in the innocuous poolthat have the spurious tokens.
As the figure shows, regardless of howτ is chosen, the learner is forced either to classify

XIII

innocuous samples containing the spurious features as false positives, or to have 100% false
negatives.

The challenge for the attacker is to choose spurious features that occur in the innocu-
ous training pool (which the attacker cannot see) in the correct proportion for the attack to
work. The attacker needs to choose spurious features that occur infrequentlyenough in the
innocuous pool that the corresponding Bayes scoreP(S|+)

P(S|−)
is large, butfrequentlyenough that

a significant fraction of the samples in the innocuous pool contain all of the spurious features;
i.e.so that the forced false positive rate is significant.

Attack Analysis We show that the attack works for a significant range of parameters. The
attacker’sa priori knowledge of the particular network protocol is likely to allow him to
choose appropriate spurious features. A simple strategy isto identify a type of request in the
protocol that occurs in a small but significant fraction of requests (e.g.5%), and that contains
a few features that are not commonly found in other requests.These features are then used as
the spurious features.

We first determine what parameters will give the innocuous samples containing the spu-
rious features a higher Bayes score than the target-class samples. For simplicity, we assume
thatP(si |−) is the same for each spurious featuresi .

Theorem 5 Given that each target-class sample contains the feature set W andβ α spurious
features si chosen uniformly at random from the set ofα spurious features S, samples con-
taining all α spurious features in S have a higher Bayes score than the target-class samples
when:

P(si |−) < β and(β
P(si |−))

β α−α ≤ P(W|−)

The conditionP(si |−) < β is necessary to ensure thatP(si |−) < P(si |+). Otherwise, the
learner will not use the spurious features in the Bayes classifier.

The second condition is derived as follows:

P(S|+)
P(S|−)

≥ P(β S,W|+)
P(β S,W|−)

Innocuous samples have a higher Bayes score
P(si |+)α

P(si |−)α ≥ P(si |+)βα P(W|+)

P(si |−)βα P(W|−)
Independence assumption

β α

P(si |−)α ≥ β βα (1)

P(si |−)βα P(W|−)
Substitution

(β
P(si |−)

)β α−α ≤ P(W|−) Rearrangement

Note that while we have assumed independence between features here, the attack could
still apply to non-Naive Bayes learners, provided thatP(S|+)

P(S|−)
≥ P(β S,W|+)

P(β S,W|−)
is satisfied. Whether

and how it can be satisfied will depend on the specific implementation of the learner.
When these conditions are satisfied, the classifier must either classify innocuous samples

containing the spurious featuresSas positive, or suffer 100% false negatives. Either way can
be considered a ‘win’ for the attacker. Few sites will be willing to tolerate a significant false
positive rate, and hence will choose 100% false negatives. If sitesare willing to tolerate the
false positive rate, then the attacker has succeeded in performing a denial-of-service attack.
Interestingly, the attacker could choose his spurious tokens in such a way as to perform a very
targeted denial-of-service attack, causing innocuous samples of a particular type to be filtered
by the classifier.

For the threshold-choosing algorithm used by Polygraph,τ will be set to achieve 100%
false negatives ifP(S|−)

P(S|+)
≥F . Otherwise it will be set to falsely classify the samples containing

the spurious featuresSas positive.

Evaluation The Correlated Outlier is practical for an adversary to implement, even though he
must make an educated guess to choose the set of spurious features that occur with a suitable
frequency in the innocuous pool.

XIV

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.0002 0.0004 0.0006 0.0008 0.001

M
ax

 P
(s

i|-
)

P(W|-)

α=5 β=30%
α=10 β=30%

α=100 β=30%

Fig. 9.Correlated Outlier attack evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.0002 0.0004 0.0006 0.0008 0.001

M
ax

 P
(s

i|-
)

P(W|-)

N= 0% α=10 β=30%
N=10% α=10 β=30%
N=50% α=10 β=30%
N=90% α=10 β=30%

Fig. 10. Correlated Outlier attack evaluation,
with chaff

There are four parameters in Theorem 5 that determine whether the attack is successful.
The attacker choosesα, how many spurious features to use, andβ , the fraction of those
spurious features to include in each target-class sample. The likelihood of success increases
with greaterα. However, since he must findα spurious features that are highly correlated in
the innocuous pool, relatively low values are the most practical.

The third parameter, the frequency of the target-class features in the innocuous pool
P(W|−) is out of the attacker’s hands. High values ofP(W|−) make the attack easiest. In-
deed, ifP(W|−) is high, the learner is already forced to choose between false negatives, and
significant false positives. We show the attack is still practical for low values ofP(W|−).

The fourth parameter, the frequency of the spurious features in the innocuous poolP(si |−),
is not directly controlled by the attacker. The attacker’s challenge is to choose the spurious
features such thatP(si |−) is low enough that the attacker succeeds in getting the innocuous
features with allα of the spurious featuresSto have a higher Bayes score than the target-class
samples.

Figure 9 shows that the attack can succeed for a wide range of realistic parameters. Each
curve in the graph represents a different attacker choice ofα. As P(W|−) increases, the
maximum value ofP(si |−) also increases. Even for very low values ofP(W|−) andα, the
attacker has a great deal of room for error in his estimation of P(si |−).

Again, any value that satisfies these constraints will forcethe the learner to choose be-
tween false negatives and false positives, and the classifier will not improve as more target-
class samples are obtained. If the learner uses the Polygraph threshold-setting algorithm, then
τ will be set to achieve 100% false negatives ifP(S|−)

P(S|+) ≥ F. Otherwise it will be set to have
low false negatives, but will classify the samples containing the spurious featuresSas posi-
tive. The signature will not improve, and as long as it is in use, legitimate samples containing
those samples will be false positives, causing a targeted denial of service.

4.4 Attack II: Suspicious Pool Poisoning

Up to this point we have assumed that the suspicious and innocuous pools are noise-free.
That is, the suspicious pool contains only target-class samples, and the innocuous pool con-
tains only innocuous samples. In some cases, however, the attacker may be able to inject
constructed samples into the suspicious pool, the innocuous pool, or both, as described in
Section 2. We first consider the case where the attacker is able to injectchaff, specially con-
structed samples, into the suspicious pool.

Attack Description The chaff can simultaneously have two effects. First, by notincluding the
actual target-class featuresW, the classifier will calculate a lowerP(W|+). The actual target-
class samples in the suspicious pool will have lower Bayes scores as a result, stretching the
false negative curve of the training data distribution graph to the left.

XV

Second, the classifier will calculate a higherP(si |+) for any spurious featuresi included
in the chaff. This will cause innocuous samples containing those features to have a higher
Bayes score, stretching the false positive curve of the training data distribution graph to the
right, in the same manner as in the Correlated Outlier attack(Figure 8).Unlike the target-
class samples, each chaff sample can containall of the spurious features, since it makes no
difference to the attacker whether the chaff samples are classified as positive by the resulting
Bayes classifier.

Attack Analysis The attacker’s goal is again to force the learner to choose between false
positives and false negatives, by ensuring that the score ofa sample containing allα of the
spurious featuresS has a higher Bayes score than a sample containing the true target-class
featuresW, and a fractionβ of the spurious features. Assuming that the chaff in the suspicious
pool contains allα of the spurious features, the attacker can include fewer spurious features
in the actual target-class samples, or even none at all.

Theorem 6 Suppose that the fraction N of samples in the suspicious poolis chaff containing
the spurious features S. Samples containing allα spurious features have a higher Bayes
score than samples containing the actual target-class features W and the fractionβ of theα
spurious features when:

P(si |−) < N+(1−N)β and(1−N)(
N+β (1−N)

P(si |−))β α−α ≤ P(W|−)

When these conditions are satisfied, this attack becomes equivalent to the Correlated Out-
lier attack. Notice that when there is no chaff(N = 0) these conditions simplify to the condi-
tions presented in Section 4.3.

Evaluation We perform a similar evaluation as in Section 4.3. In this case, the attacker uses
a relatively low number of spurious features (α = 10), and each curve of the graph represents
different ratios of chaff in the suspicious pool. Figure 10 shows that the addition of chaff
to the suspicious pool greatly improves the practicality ofthe attack. The resulting classifier
will again either have 100% false negatives, or cause legitimate samples with the spurious
features to be blocked.

4.5 Attack III: Innocuous Pool Poisoning

We next consider the case where the attacker is able to poisonthe innocuoustraining pool.
The most obvious attack is to attempt to get samples with the target-class featuresW into the
innocuous pool. If the target-class samples include only the featuresW (no spurious features),
then it would be impossible to generate a classifier that classified the target-class samples as
positive without also classifying the samples that the attacker injected into the innocuous
pool as positive. Hence, the learner could be fooled into believing that a low-false-positive
classifier cannot be generated.

The solution to this problem proposed by Polygraph [15] for automatic worm signature
generation is to use a network trace taken some timet ago, such thatt is greater than the
expected time in-between the attacker discovering the vulnerability (and hence discovering
what the worm featuresW will be), and the vulnerability being patched on most vulnerable
machines. The time periodt is somewhat predictable assuming that the attacker does not
discover the vulnerability before the makers of the vulnerable software do. Conversely,t
could be an arbitrary time period for a “zero-day” exploit. However, we show that a patient
attacker can poison the innocuous pool in a useful waybeforehe knows what the worm
featuresW are.

Attack Description The attacker can aid the Correlated Outlier attack by injecting spurious
tokens into the innocuous pool. In this case, using an old trace for the innocuous pool does not
help at all, since the attacker does not need to knowW at the time of poisoning the innocuous
pool. That is, an attacker who does not yet have a vulnerability to exploit can choose a set of
spurious featuresS, and preemptively attempt to get samples containingS into the learner’s

XVI

innocuous pool, thus increasingP(S|−). The attacker can then use these spurious features
to perform the Correlated Outlier attack, optionally poisoning the suspicious pool as well as
described in Section 4.4.

Attack Analysis If the attacker is able to inject samples containingSinto the innocuous pool,
P(S|−) will be increased. The attacker’s best strategy may be to usespurious features that
do not occur at all in normal traffic. This would allow him to more accurately estimate the
learner’sP(S|−) when designing the worm.

Aside from this additional knowledge, the attack proceeds exactly as in Section 4.4.

Evaluation The success of the attack is determined by the same model as inTheorem 6. The
addition of the injected spurious features helps make the attack more practical by allowing
him to more accurately predict a set of spurious features that occur together in a small fraction
of the innocuous training pool. Success in the attack will again either result in the classifier
having 100% false negatives, or result in innocuous samplescontaining the spurious features
to be blocked.

5 Discussion

5.1 Hierarchical Clustering

Polygraph [15] implements a hierarchical clustering algorithm to enable its conjunction and
subsequence learners to work in the presence of non-worm samples in the suspicious training
pool. Each sample starts as its own cluster, and clusters aregreedily merged together. Each
cluster has a signature associated with it that is the intersection of the features present in the
samples in that cluster. The greedy merging process favors clusters that produce low-false-
positive signatures;i.e., those that have the most distinguishing set of features in common.
When no more merges can be performed without the resulting cluster having a high-false-
positive signature, the algorithm terminates and outputs asignature for each sufficiently large
cluster. Ideally, samples of unrelated worms are each in their own cluster, and non-worm
samples are not clustered.

One might wonder whether the hierarchical clustering algorithm helps to alleviate the
Randomized Red Herring or Dropped Red Herring attacks. It does not.

First consider the Randomized Red Herring attack. Each wormsample has the set of
features that must be present,W, and some subset of a set of spurious features,S. Keep in
mind that the attacker’s goal is for the resulting signatureto be toospecific. If the hierarchical
clustering algorithm puts all the worm samples into one cluster, which is likely, the resulting
signature will be exactly the same as if no clustering were used. If it does not, the resulting
signature can only bemorespecific, which further increases false negatives.

For example, suppose one cluster contains spurious features s1, s2, ands3, and another
cluster contains spurious featuress2, s3, ands4. Both clusters contain the necessary worm
featuresW. If these clusters are merged together, the resulting signature is the conjunction
(W∧s2∧s3)
If the clusters are not merged, then the learner will publishtwo signatures. Assuming both
signatures are used, this is equivalent to the single signature
(W∧s1∧s2∧s3)∨ (W∧s2∧s3∧s4)
This can be rewritten as:
(W∧s2∧s3)∧ (s1∨s4)
Obviously, this is more specific than the signature that would have resulted if the two clusters
were merged, and hence will have strictly more false negatives.

The same is true for the Dropped Red Herring attack, by similar reasoning. Again, if all
samples of the worm are merged into one cluster, the result isequivalent to if no clustering
were used.Not merging the samples into a single cluster can only make the signature more
specific, which further increases false negatives.

XVII

5.2 Attack Application to Other Polymorphic Worm Signature Generation Systems

At this time, the only automatic polymorphic worm signaturegeneration systems that are
based on learning are Polygraph [15] and Hamsa [9]. Throughout this paper, we have used
Polygraph’s algorithms as concrete examples. Hamsa generates conjunction signatures, with
improved performance and noise-tolerance over Polygraph.To generate a conjunction sig-
nature, Hamsa iteratively adds features found in the suspicious pool, preferring features that
occur in themostsamples in the suspicious pool and result in sufficiently lowfalse positives
in the innocuous pool.

We begin with two observations. First, the adversary can cause Hamsa to use spurious fea-
tures in its signature, as long as those features occur sufficiently infrequently in the innocuous
pool, and occur at least as often in the suspicious pool as thetrue target-class features. Second,
the false-negative bounds proven in the Hamsa paper only apply to the target-class samples
actually found in the suspicious pool, and not necessarily to subsequently generated samples.

Unlike Polygraph, Hamsa stops adding features to the signature once the signature causes
fewer false positives in the innocuous pool than some predetermined threshold. As a re-
sult, Hamsa is relatively resilient to the Randomized Red Herring attack. For example, using
α = 400,p = .995, Hamsa exhibits only 5% false negatives after collecting 100 target-class
samples. While this incidence is still non-trivial, it is animprovement over Polygraph’s cor-
responding 70% false negatives with these parameters.

Hamsa is also less vulnerable to the Dropped Red Herring attack, but unfortunately not
completely invulnerable. First, let us assume that Hamsa’smethod of breaking ties when se-
lecting features is not predictable by the adversary (the method does not appear to be defined
in [9]). In this case, the simplest form of the attack will notsucceed, as the adversary cannot
predict which spurious features are actually used, and hence which to drop to avoid the gen-
erated classifier. However, suppose that the attacker is able to inject noise into the suspicious
pool, and the spurious features follow some ordering of probabilities with which they appear
in a particular noise sample. This ordering then specifies the (probable) preferential use of
each spurious feature in the generated signature. That is, the most probable spurious feature
will be chosen first by Hamsa, since it will have the highest coverage in the suspicious pool,
and so on. In that case, an adversary who can injectn noise samples into the suspicious pool
can force up ton iterations of the learning process.

5.3 Attack Application to Spam

The correlated outlier attack described in Section 4.3 is also applicable to Bayesian spam fil-
ters, though the specific analysis is dependent on the exact implementation. There is already
an attack seen in the wild where a spam email includes a collection of semi-random words or
phrases to deflate the calculated probability that the emailis spam [6].5 To perform the corre-
lated outlier attack on a spam filter, the adversary would useas spurious features words that
tend to occur together in a fraction of non-spam emails. If a classifier is trained to recognize
such an email as spam, it may suffer false positives when legitimate email containing those
words is received. Conversely, if a classifier’s threshold is biased toward not marking those
legitimate mails as spam, it may suffer from false negativeswhen receiving spam with the
chosen features.

As in the worm case, it may be possible for a spam author to guess what words occur
in the correct frequency in the innocuous training data. It seems likely that such an attack
could succeed were it tailored to an individual user, thoughit would not be a financial win
for the spam author. However, the spam author might be able totailor the spurious features
to a broader audience, for example by selecting jargon wordsthat are likely to occur together
in the legitimate mail of a particular profession. Another tactic would be to use words that

5 Note that the Polygraph implementation of a Bayes classifieris not vulnerable to this attack, because
it discards features that have a higher probability of occurring in negative samples than positive
samples.

XVIII

occur in a certain kind of email that occurs at the needed low-but-significant frequency. For
example, adding words or phrases in spam emails that one would expect to see in a job offer
letter could result in very high-cost false positives, or inthe savvy user being hesitant to mark
such messages as spam for that very reason.

5.4 Recommendation for Automatic Worm Signature Generation

Current pattern extraction insufficient Most currently proposed systems for automatically
generating worm signatures work by examining multiple samples of a worm and extracting
the common byte patterns. This is an attractive approach because monitoring points can be
deployed with relative ease at network gateways and other aggregation points.

Unfortunately, most previous approaches [7, 8, 21, 24] do not handle the case where the
worm varies its payload by encrypting its code and using a small, randomly obfuscated de-
cryption routine. In this paper, we have shown that the only proposed systems that handle
this case of polymorphism [9, 15] can be defeated by a worm that simply includes spurious
features in its infection attempts.

We believe that if there is to be any hope of generating signatures automatically by only
examining the byte sequences in infection attempt payloads, a more formal approach will be
needed. Interestingly, while there has been some research in the area of spam email classi-
fication in the scenario where an adversaryreactsto the current classifier in order to evade
it [6, 13], there has been little research in the machine learning scenario where an adversary
constructs positive samples in such a way as to prevent an accurate classifier from being gen-
erated in the first place. One approach that bears further investigation is Winnow [11, 12],
a machine learning algorithm with proven bounds on the number of mistakes made before
generating an accurate classifier.

Automatic Semantic AnalysisRecent research proposes automatedsemanticanalysis of
collected worm samples, by monitoring the execution of a vulnerable server as it becomes
compromised [2, 3, 5]. These approaches can identify which features of the worm request
causedit to exploit the monitored software, and are hence likely tobe invariant, and useful
in a signature. This approach is also less susceptible to being fooled by the worm into using
spurious features in a signature, since it will ignore features that have no effect on whether
the vulnerable software actually gets exploited. The features so identified can also be more
expressive than the simple presence or absence of tokens;e.g.,they may specify the minimum
length of a protocol field necessary to trigger a buffer overflow.

While monitoring points employing semantic analysis are not as easily deployed as those
that do not, since they must run the vulnerable software, they are more likely to produce sig-
natures with low false positives and false negatives than those produced by pattern extraction
alone.

Given the state of current research, we believe that future research on automatic worm signa-
ture generation should focus on provable mistake bounds forpattern-extraction-based learn-
ers and on further analysis of and improvements to automatedsemantic analysis techniques.

6 Related Work

Attacking learning algorithms Barrenoet al.independently and concurrently investigate the
challenge of using machine learning algorithms in adversarial environments [1]. The authors
present a high-level framework for categorizing attacks against machine learning algorithms
and potential defense strategies, and analyze the properties of a hypothetical outlier detection
algorithm. Our work is more concrete in that it specifically addresses the challenge of ma-
chine learning for automatic signature generation, and provides in-depth analysis of several
practical attacks.

XIX

Perdisciet al. independently and concurrently propose attacks [18] against the learning
algorithms presented in Polygraph [15]. Their work shows how an attacker able to systemati-
cally inject noise in the suspicious pool can prevent a correct classifier from being generated,
for both conjunction and Bayes learners. Their attack against the Polygraph Bayes signature
generation algorithm is similar to our correlated outlier attack, though we further generalize
the attack to show both how it can be performed even without suspicious pool poisoning, and
how it can be strengthened with innocuous pool poisoning.

Pattern-extraction signature generationSeveral systems have been proposed to automati-
cally generate worm signatures from a few collected worm samples. Most of these systems,
such as Honeycomb [8], EarlyBird [21], and Autograph [7], have been shown not to be able to
handle polymorphic worms [15]. While PADS [24] has been shown to be robust to obfusca-
tion of the worm code, it is unclear whether it would work against encrypted code combined
with only a small obfuscated decryption routine.

Polygraph [15] demonstrates that it is possible to generateaccurate signatures for poly-
morphic worms, because there are some features that must be present in worm infection
attempts to successfully exploit the target machine. Polygraph also demonstrates automatic
signature-generation techniques that are successful against maximally-varying polymorphic
worms.

Hamsa [9] is a recently proposed automatic signature generation system, with improve-
ments in performance and noise-tolerance over Polygraph. As we discuss in Section 5, it is
more resilient than Polygraph to the attacks presented here, but not entirely resilient.

Semantic analysisRecent research proposes performing automatedsemanticanalysis of col-
lected worm samples, by monitoring the execution of a vulnerable server as it gets compro-
mised [2,3,5,10,25]. These approaches can identify what features of the worm requestcaused
it to exploit the monitored software, and are hence likely tobe invariant, and useful in a sig-
nature. This approach is also less susceptible to be fooled by the worm into using spurious
features in the signature, since it will ignore features that have no effect on whether the vul-
nerable software actually gets exploited. The features identified can also be more expressive
than the simple presence or absence of tokens, specifying such things as the minimum length
of a protocol field necessary to trigger a buffer overflow.

Execution filtering In this paper we seek to address the problem of automaticallygener-
ating worm signatures. Other recent research proposes using semantic analysis to generate
execution filters, which specify the location of a vulnerability, and how to detect when it is
exploited by automatically emulating [20] or rewriting [14] that part of the program.

7 Conclusion

Learning an accurate classifier from data largely controlled by an adversary is a difficult task.
In this work, we have shown that even adelusiveadversary, who provides correctly labeled
but misleading training data, can prevent or severely delaythe generation of an accurate
classifier. We have concretely demonstrated this concept with highly effective attacks against
recently proposed automatic worm signature generation algorithms.

When designing a system to learn in such an adversarial environment, one must take
into account that the adversary will provide theworst possibletraining data, in theworst
possibleorder. Few machine learning algorithms provide useful guarantees when used in
such a scenario.

The problem of a delusive adversary must be taken into account in the design of malicious
classifier generation systems. Promising approaches include designing learning algorithms
that are robust to maliciously generated training data, training using malicious data samples
notgenerated by a malicious source, and performing deeper analysis of the malicious training
data to determine the semantic significance of features before including them in a classifier.

XX

References

1. Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Tygar. Can machine
learning be secure? InASIA CCS, March 2006.

2. David Brumley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha. Towards automatic
generation of vulnerability-based signatures. InIEEE Symposium on Security and Privacy, 2006.

3. Manuel Costa, Jon Crowcroft, Miguel Castro, and Antony Rowstron. Vigilante: End-to-end con-
tainment of internet worms. InSOSP, 2005.

4. Jedidiah R. Crandall and Fred Chong. Minos: Architectural support for software security through
control data integrity. InInternational Symposium on Microarchitecture, December 2004.

5. Jedidiah R. Crandall, Zhendong Su, S. Felix Wu, and Frederic T. Chong. On deriving unknown vul-
nerabilities from zero-day polymorphic and metamorphic worm exploits. In12th ACM Conference
on Computer and Communications Security (CCS), 2005.

6. Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, andDeepak Verma. Adversarial clas-
sification. InTenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), 2004.

7. Hyang-Ah Kim and Brad Karp. Autograph: toward automated,distributed worm signature detec-
tion. In 13th USENIX Security Symposium, August 2004.

8. Christian Kreibich and Jon Crowcroft. Honeycomb - creating intrusion detection signatures using
honeypots. InHotNets, November 2003.

9. Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, and Brian Chavez. Hamsa: fast signature
generation for zero-day polymorphic worms with provable attack resilience. InIEEE Symposium
on Security and Privacy, May 2006.

10. Zhenkai Liang and R. Sekar. Fast and automated generation of attack signatures: A basis for build-
ing self-protecting servers. In12th ACM Conference on Computer and Communications Security
(CCS), 2005.

11. N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear threshold algo-
rithm. Machine Learning, 2(285-318), 1988.

12. N. Littlestone. Redundant noisy attributes, attributeerrors, and linear-threshold learning using
winnow. InFourth Annual Workshop on Computational Learning Theory, pages 147–156, 1991.

13. Daniel Lowd and Christopher Meek. Adversarial learning. In Eleventh ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), 2005.

14. James Newsome, David Brumley, and Dawn Song. Vulnerability-specific execution filtering for
exploit prevention on commodity software. In13th Symposium on Network and Distributed System
Security (NDSS’06), 2006.

15. James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically generating signatures for
polymorphic worms. InIEEE Symposium on Security and Privacy, May 2005.

16. James Newsome and Dawn Song. Dynamic taint analysis for automatic detection, analysis, and
signature generation of exploits on commodity software. In12th Annual Network and Distributed
System Security Symposium (NDSS), February 2005.

17. delusive (definition). InOxford English Dictionary, Oxford University Press, 2006.
18. Roberto Perdisci, David Dagon, Wenke Lee, Prahlad Fogla, and Monirul Sharif. Misleading worm

signature generators using deliberate noise injection. InIEEE Symposium on Security and Privacy,
May 2006.

19. Yann Ramin. ATPhttpd. http://www.redshift.com/∼yramin/atp/atphttpd/.
20. Stelios Sidiroglou, Michael E. Locasto, Stephen W. Boyd, and Angelos D. Keromytis. Building a

reactive immune system for software services. InUSENIX Annual Technical Conference, 2005.
21. Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated worm fingerprint-

ing. In 6th ACM/USENIX Symposium on Operating System Design and Implementation (OSDI),
December 2004.

22. S. Staniford, D. Moore, V. Paxson, and N. Weaver. The top speed of flash worms. InACM CCS
WORM, 2004.

23. G. Edward Suh, Jaewook Lee, and Srinivas Devadas. Secureprogram execution via dynamic in-
formation flow tracking. InASPLOS, 2004.

24. Yong Tang and Shigang Chen. Defending against internet worms: A signature-based approach. In
IEEE INFOCOM, March 2005.

25. Jun Xu, Peng Ning, Chongkyung Kil, Yan Zhai, and Chris Bookholt. Automatic diagnosis and
response to memory corruption vulnerabilities. In12th Annual ACM Conference on Computer and
Communication Security (CCS), 2005.

