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Abstract Many online social networks are fundamentally
directed, i.e., they consist of both reciprocal edges (i.e., edges
that have already been linked back) and parasocial edges
(i.e., edges that haven’t been linked back). Thus, understand-
ing the structures and evolutions of reciprocal edges and
parasocial ones, exploring the factors that influence paraso-
cial edges to become reciprocal ones, and predicting whether
a parasocial edge will turn into a reciprocal one are basic re-
search problems.

However, there have been few systematic studies about
such problems. In this paper, we bridge this gap using a
novel large-scale Google+ dataset1 crawled by ourselves as
well as one publicly available social network dataset. First,
we compare the structures and evolutions of reciprocal edges
and those of parasocial edges. For instance, we find that re-
ciprocal edges are more likely to connect users with similar
degrees while parasocial edges are more likely to link ordi-
nary users (e.g., users with low degrees) and popular users
(e.g., celebrities). However, the impacts of reciprocal edges
linking ordinary and popular users on the network struc-
tures increase slowly as the social networks evolve. Sec-
ond, we observe that factors including user behaviors, node
attributes, and edge attributes all have significant impacts
on the formation of reciprocal edges. Third, in contrast to
previous studies that treat reciprocal edge prediction as ei-
ther a supervised or a semi-supervised learning problem, we
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identify that reciprocal edge prediction is better modeled as
an outlier detection problem. Finally, we perform extensive
evaluations with the two datasets, and we show that our pro-
posal outperforms previous reciprocal edge prediction ap-
proaches.

1 Introduction

Many online social networks (OSNs) such as Google+, Flickr,
and Twitter are fundamentally directed, i.e., that a user u
adds v into his/her friend/followee list does not necessar-
ily mean that v also adds u back. Thus, an OSN essentially
consists of both reciprocal edges (i.e., edges that have al-
ready been linked back) and parasocial edges (i.e., edges
that haven’t been linked back).

Therefore, understanding the interplays between recip-
rocal edges and parasocial ones in the evolution of OSNs
and predicting whether a parasocial edge will turn into a re-
ciprocal one (i.e., reciprocal edge prediction problem) are
basic research problems, the growing interest of which is
highlighted by their importance in applications such as di-
rected social network modeling, friend recommendation, in-
formation propagation, and network compression [8].

Reciprocal edge prediction is different from the clas-
sical link prediction problem. First, previous work [7] has
shown that features working well for link prediction are not
the most effective ones for reciprocal edge prediction. Sec-
ond, in the setting of reciprocal edge prediction, a parasocial
edge already exists between two nodes, from which we can
extract features. Third, they have very different domains.
Specifically, the domain of the link prediction problem in-
cludes all non-existing edges in the network, which is huge.
However, the domain of the reciprocal edge prediction prob-
lem consists of the parasocial edges, which is much smaller.
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The domain sizes have significant impact on the efficiency
of the corresponding prediction algorithms.

Most existing measurement papers [40,27,28,19,18,12,
4,2,35] that study the structures and evolutions of OSNs ei-
ther 1) tranform a directed OSN to an undirected one (e.g.,
keeping only the reciprocal edges) and then look into its
structural properties (e.g., degree distribution, diameter, ho-
mophily, communities) and their evolutions or 2) look into
basic structural properties (e.g., in/out degree distributions,
reciprocity, triangles) of the original directed OSN and their
evolutions. Moreover, recent studies treated the reciprocal
edge prediction problem as either a supervised learning prob-
lem [7] or a semi-supervised learning problem [15].

However, the differences between the structures and evo-
lutions of reciprocal edges and those of parasocial edges
are largely unexplored. It is also unclear that how user be-
haviors (e.g., tendencies of reciprocally linking back), node
attributes (e.g., school, employer and major derived from
users’ profiles), and edge attributes (e.g., edge age) influ-
ence the formation of reciprocal edges.

Moreover, treating reciprocal edge prediction as a su-
pervised or a semi-supervised learning problem could in-
cur a serious issue. Specifically, given a network snapshot,
these approaches treat reciprocal edges as positive examples
and sample some parasocial edges as negative examples to
train models. Unfortunately, these sampled parasocial edges
are also test examples in the next snapshot. Moreover, some
of them might have turned to be positive. As a result, the
better the trained models are, the worse generalization per-
formances they possibly achieve. In fact, in the setting of
reciprocal edge prediction, we can only observe positive ex-
amples.

Our work: In this paper, we first compare the structures and
evolutions of reciprocal edges and those of parasocial edges
using a large-scale unique Google+ social network dataset
that we crawled by ourselves and a Flickr social network
dataset that was obtained from Mislove [27]. For instance,
we find that reciprocal edges are more likely to link users
with similar degrees while parasocial edges are more likely
to connect ordinary users (i.e., users with low degrees) and
popular users (e.g., celebrities). However, the impacts of re-
ciprocal edges linking ordinary and popular users on the
network structures increase slowly as the social networks
evolve. Second, we observe that user behaviors, node at-
tributes, and edge attributes all have significant influences
on the formation of reciprocal edges. For example, sharing
common schools triples the probability of reciprocally link-
ing back to a parasocial edge. These measurement results
inform us the designs of features in the prediction of recip-
rocal edges. Third, in contrast to previous studies that treat
reciprocal edge prediction as either a supervised or a semi-
supervised learning problem, we model it as an outlier de-
tection problem. Finally, we perform extensive evaluations
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Fig. 1: Illustration of friend requests, friend acceptances,
parasocial edges, and reciprocal edges. Specifically, (w,u),
(w,v), and (v,u) are friend requests; (u,w) is a friend accep-
tance; (w,u) and (u,w) are reciprocal edges; (w,v) and (v,u)
are parasocial edges.

with the Google+ and Flickr datasets, and we demonstrate
that our proposal outperforms previous approaches.

To summarize, the key contributions of this work are:

– We perform the first study to compare the structures and
evolutions of reciprocal edges and those of parasocial
edges using a unique large-scale Google+ dataset crawled
by ourselves and a publicly available large-scale dataset.

– We find that user behaviors, node attributes, and edge
attributes all have significant influences on the forma-
tion of reciprocal edges from parasocial edges, based on
which we extract new features for predicting reciprocal
edges.

– We model reciprocal edge prediction as an outlier detec-
tion problem, in contrast to previous studies that treat re-
ciprocal edge prediction as either a supervised or a semi-
supervised learning problem. Moreover, we demonstrate
that our proposal outperforms previous ones via exten-
sively evaluating them using the two datasets.

2 Notations and Datasets

We begin with the introduction of a few notations. Then, we
describe our novel Google+ dataset and the publicly avail-
able Flickr dataset. The Google+ dataset represents an OSN’s
early stage while the Flickr dataset represents an OSN’s steady
stage, and thus they complement each other.

2.1 Notations

We denote a directed social network as G = (V,E), where V
and E are respectively the set of nodes and edges. We will
elaborate how the nodes and edges are constructed when de-
scribing the datasets. Moreover, the snapshot of G at time t
is denoted as G(t).

A directed edge (u,v) is called as a friend request if the
reverse directed edge (v,u) does not exist yet or appears after
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Table 1: Statistics of a few basic network metrics of the largest snapshots of Google+ and Flickr.

#Nodes #Edges Reciprocity Assort. coeff. Aver. clust. coeff.
Parasocial Reciprocal Parasocial Reciprocal

Google+ 29,627,807 473,888,579 0.376 -0.014 0.301 0.298 0.296
Flickr 2,302,925 33,140,018 0.451 -0.003 0.127 0.361 0.297

(u,v)2, otherwise it’s called as a friend acceptance. More-
over, following the terminology in social science [16], we
also classify edges be to parasocial and reciprocal. Specifi-
cally, a directed edge (u,v) is called parasocial if the reverse
directed edge (v,u) does not exist yet, otherwise it’s called
reciprocal. According to the definitions, parasocial edges are
friend requests that haven’t been accepted yet. Figure 1 il-
lustrates these concepts. For instance, in G(t), (w,u), (w,v)
and (v,u) are friend requests, (u,w) is a friend acceptance,
(w,u) and (u,w) are reciprocal edges and (w,v) and (v,u)
are parasocial edges.

We can undirect a directed social network G = (V,E) in
two ways, i.e., parasocial version Gp = (Vp,Ep) and recip-
rocal version Gr = (Vr,Er), which satisfy that Vp =Vr =V ,
Ep = {(u,v)|(u,v)∈E or (v,u)∈E} and Er = {(u,v)|(u,v)∈
E and (v,u) ∈ E}. Intuitively, the reciprocal version consists
of undirected reciprocal edges while the parasocial version
includes both undirected reciprocal and parasocial edges.

For a node u, we denote its incoming neighbors as Γi(u)=
{v|(v,u)∈E} and indegree as di(u)= |Γi(u)|, outgoing neigh-
bors as Γo(u) = {v|(u,v) ∈ E} and outdegree as do(u) =
|Γo(u)|, parasocial neighbors as Γp(u) = Γi(u)∪Γo(u) and
parasocial degree as dp(u) = |Γp(u)|, and reciprocal neigh-
bors as Γr(u)=Γi(u)∩Γo(u) and reciprocal degree as dr(u)=
|Γr(u)|.

Assume nodes also have binary attributes (e.g., Google
Inc., Computer Science). For each binary attribute a, we de-
note its social neighbors Γs(a) as the set of nodes in V that
have the attribute a, and social degree as ds(a) = |Γs(a)|.
Furthermore, we denote the set of attributes of a node u as
Γa(u) and attribute degree as da(u) = |Γa(u)|.

2.2 Datasets

Google+: Google+ provides each user with an incoming
friend list (i.e., “have you in circles”), an outgoing friend list
(i.e., “in your circles”) and a profile page. We began to crawl
daily snapshots of public Google+ social network structures
and user profiles shortly after it was launched in late June,
2011; our dataset consists of 79 snapshots crawled from July
6 to October 11, 2011 (i.e., 98 days). The first snapshot
was crawled by breadth-first search (without early stopping).

2 Note that some directed edges (e.g., in a Twitter follower network)
don’t really indicate “friends”. Here, we denote them as friend requests
for convenience.

On subsequent days, we expanded the social structure from
the previous snapshot. For most snapshots, our crawl fin-
ished within one day as Google did not limit the crawl-
ing rate during that time. The 79 snapshots are denoted as
G(0),G(1), · · · ,G(97), where superscripts are the normalized
crawling dates of the snapshots.

We take each user u in Google+ as a node, and connect
it to her outgoing friends via outgoing edges and incoming
friends via incoming edges. Apart from the social structure,
nodes also have attributes derived from users’ profiles. We
adopt four attribute types, i.e., School, Major, Employer and
City. Specifically, we find all distinct schools, majors, em-
ployers and cities that appear in at least one crawled user
profile and use them as binary attributes.

Gong et al. [12] roughly divided the evolution of Google+
into three phases: Phase I from day 1 to day 20, which cor-
responds to the early days of Google+ whose size increased
dramatically; Phase II from day 21 to day 75, during which
Google+ went into a stabilized increasing phase; and Phase
III from day 76 to day 98, when Google+ was opened to
public (i.e., without requiring an invitation), resulting in a
dramatic growth again. We point out the three phases be-
cause reciprocal edges also evolve differently in them (see
Section 3).

Flickr: Flickr is a photo-sharing site based on a social net-
work, and it provides each user a friend list. This Flickr
dataset, obtained from Mislove et al. [27], has 102 snapshots
crawled daily between February 3rd, 2007 and May 18th,
2007. We denote these snapshots as G(0),G(1), · · · ,G(101).
This dataset represents a steady stage of Flickr since it was
launched in 2002. We take each user as a node and connect
it to its friends via outgoing edges. Note that this dataset
doesn’t have node attributes.

Summary: Our Google+ dataset represents an OSN’s early
stage while the Flickr dataset represents an OSN’s steady
stage, making them complement each other. Thus, as we will
show in the following sections, the two datasets have quan-
titatively or even qualitatively different structures and evo-
lutions, and reciprocal prediction accuracy. Table 1 shows
the statistics of a few basic network metrics of the largest
snapshots of the Google+ and Flickr datasets. Reciprocity
in the table is the fraction of friend requests that are already
accepted.
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Fig. 2: Evolution of assortativity coefficients in (a) Google+ and (b) Flickr.

3 Structure and Evolution

In this section, we compare both global and local structures
and their evolutions of reciprocal edges with those of paraso-
cial edges. Specifically, we explore the global one via study-
ing degree homophily of the parasocial and reciprocal ver-
sions of the directed online social networks; we probe the
local one via looking into the corresponding clustering co-
effients.

3.1 Global structure and evolution

To this end, we look into degree homophily of the paraso-
cial and reciprocal versions of the directed social networks.
Degree homophily characterizes if two linked nodes tend
to have similar degrees. Furthermore, assortativity coeffi-
cient [30] ranging from -1 to 1 is used to quantify degree
homophily. Intuitively, we can roughly classify users in on-
line social networks into two groups, i.e., ordinary users
(e.g., low-degree users) and popular users (e.g., celebrities).
Positive assortativity indicates that edges tend to link users
within the same group; negative assortativity represents that
edges prefer to connect users across the two groups; neutral
assortativity means edges link two users without considering
which groups they belong to.

In directed social networks, each node has 4 types of
degrees, i.e., outdegree, indegree, parasocial degree, and re-
ciprocal degree. So there are 16 types of degree homophily
(e.g., outdegree-indegree homophily, indegree-indegree ho-
mophily). Previous work [28,12] explored the outdegree-
indegree homophily and found that Flickr has positive as-
sortativity and Google+ has neutral assortativity. However,
the outdegree-indegree homophily does not inform us the
structure of reciprocal nor parasocial edges. Differently, we
study the parasocial-parasocial and reciprocal-reciprocal de-
gree homophily.

Table 1 shows the assortativity coefficients of paraso-
cial and reciprocal versions of the two online social net-
works. We observe that they both have qualitatively differ-
ent parasocial and reciprocal assortativities, i.e., parasocial
assortativity is neutral while reciprocal assortativity is high
positive. This phenomena implies that reciprocal edges are
more likely to be intra-group ones (i.e., linking users within
the same group) while parasocial edges are more likely to be
inter-group ones (i.e., linking users across the two groups).
The dominating intra-group reciprocal edges make the re-
ciprocal assortativity high positive. Recall that the paraso-
cial version consists of both the undirected parasocial and
reciprocal edges, thus the dominating inter-group paraso-
cial edges neutralize the dominating intra-group reciprocal
edges, resulting in a neutral parasocial assortativity.

Figure 2 further illustrates the evolution of the assor-
tativity coefficients in Google+3 and Flickr. Again, we ob-
serve that parasocial and reciprocal assortativity coefficients
evolve qualitatively differently. Note that reciprocally link-
ing back to a parasocial edge only influences the recipro-
cal assortativity while parasocial edges only influence the
parasocial assortativity.

Recall that the evolution of Google+ is divided into three
phases which is described in Section 2.2. Parasocial assor-
tativity keeps stable in Phase I and Phase II and slightly
decreases in Phase III. However, reciprocal assortativity in-
creases dramatically in Phase I and decreases in Phase II and
Phase III. This implies that new inter-group and intra-group
parasocial edges neutralize each other in Phase I and Phase
II; after opening to the public (i.e., in Phase III), new inter-
group parasocial edges slightly dominate the intra-group ones.
Furthermore, new intra-group reciprocal edges significantly
dominate inter-group ones in Phase I; new inter-group recip-

3 The x-axis of the Google+ evolution figure spans over around 100
days although this Google+ dataset only has 79 daily snapshots be-
cause we use the actual crawling date of each snapshot.
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Fig. 3: Evolution of average clustering coefficients in (a) Google+ and (b) Flickr.

rocal edges slightly dominate the intra-group ones in Phase
II and Phase III.

In Flickr, parasocial assortativity slightly increases while
reciprocal assortativity slightly decreases. This implies that
new intra-group parasocial edges dominate new inter-group
ones in Flickr. Similar to Google+, the decreasing recipro-
cal assortativity could imply that new inter-group reciprocal
edges dominate intra-group ones.

Both online social networks imply that the impacts of
inter-group reciprocal edges on the network structures in-
crease slowly as time evolves.

3.2 Local structure and evolution

We study the local structure and evolution of reciprocal and
parasocial edges via looking into the clustering coefficients,
which characterize how the neighbors of a node are con-
nected. Given an undirected social network G = (V,E) and
a node u, u’s clustering coefficient is defined as

c(u) =
2L(u)

|Γ (u)|(|Γ (u)|−1)

, where L(u) is the number of edges among u’s neighbors
Γ (u). The average clustering coefficient is defined as C =

1
|V | ∑u∈V c(u) [37]. Intuitively, this is the average probability
that a random pair of neighbors of a random node is con-
nected.

Previous work [31,28,12] found directed social networks
have high clustering coefficients. However, these studies can-
not demonstrate the local structure of reciprocal and paraso-
cial edges. To this end, we study clustering coefficients of
the parasocial and reciprocal versions of social networks.

To determine the clustering coefficient of u, we need its
degree and the number of edges among its neighbors. On
one hand, parasocial edges increase u’s parasocial degree.

On the other hand, parasocial edges also increase the num-
ber of edges among u’s parasocial neighbors. So one natural
question is which one plays a more important role in deter-
mining the clustering coefficient.

Table 1 shows the average clustering coefficients of the
parasocial and reciprocal versions of the two social networks.
We find that parasocial clustering coefficient is larger than
the reciprocal one in both networks. Our observation indi-
cates that parasocial edges, although making nodes’ paraso-
cial neighbors more than their reciprocal neighbors, connect
the parasocial neighbors more tightly. Note that Cheng et
al. [7] observed that the reciprocal clustering coefficient is
much higher than the parasocial one in a Twitter interaction
network, where nodes are Twitter users and a directed edge
(u,v) means u has sent some @-messages to v. This implies
that friendship networks which are our cases are different
from the interaction network in terms of the local structure
of reciprocal and parasocial edges.

Figure 3 illustrates evolutions of the clustering coeffi-
cients in Google+ and Flickr. We observe that parasocial
and reciprocal clustering coefficients evolve in similar pat-
terns. In Google+, both of them decrease dramatically in
Phase I and Phase III and increase stably in Phase II. This
implies that both of users’ parasocial and reciprocal neigh-
bors become more and more loosely connected in Phase I
and Phase III while turning to be increasingly tightly con-
nected in Phase II. In Flickr, both parasocial and reciprocal
clustering coefficients decrease over time, which indicates
that users in Flickr have increasing number of neighbors and
these neighbors are more and more loosely connected.

3.3 Summary and implications

In summary, we find that reciprocal edges are more likely
to connect users with similar degrees while parasocial edges
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are more likely to link ordinary users and popular ones. How-
ever, the impacts of reciprocal edges linking ordinary and
popular users on the network structures increase slowly as
the social networks evolve. Moreover, parasocial edges, al-
though making nodes’ parasocial neighbors more than their
reciprocal neighbors, connect the parasocial neighbors more
tightly.

Our findings have significant implications for directed
social network modeling. Existing directed network mod-
els such as Preferential Attachment models [5,41], Copy-
ing model [17], Forest Fire model [23], Kronecker Graph
models [21], and Social-Attribute network model [12] can-
not capture the various degree (i.e., in, out, parasocial, and
reciprocal degrees) distributions at the same time. Very re-
cently, Durak et al. [10] designed a scalable model that can
match all specified degree distributions. Although their work
is an important step towards realistic directed social network
modeling, it only focuses on degree distributions.

We observe that the parasocial versions and reciprocal
versions of directed social networks behave (qualitatively)
differently with respect to various network metrics (e.g., as-
sortativity coefficients and clustering coeffients). These ob-
servations are new dimensions that constrain and guide the
designs of more realistic directed social network models.
For instance, one natural question is how to generate a di-
rected social network whose parasocial version has neutral
assortativity but reciprocal version has positive assortativity.
Our observations of the global and local structures of the re-
ciprocal and parasocial edges could give us insights on the
designs of better directed social network models.

4 Formation of Reciprocal Edges

In this section, we provide a more fine-grained study about
the evolution of parasocial and reciprocal edges. Specifi-
cally, we find that user behaviors, node attributes, and edge
attributes all have impact on the formation of reciprocal edges
from parasocial edges. These studies give us insights on how
to extract features when predicting reciprocal edges.

4.1 User behavior

Intuitively, users in online social networks could behave very
differently in terms of issuing and accepting friend requests.
For instance, one speculation is that users having higher ten-
dencies to accept friend requests in the past are also more
likely to accept new friend requests in the future; users whose
friend requests were more likely to be accepted in the past
will have higher probabilities of their friend requests being
accepted in the future. To quantify these intuitions, we de-
fine respectively request and acceptance local reciprocity as
Rr(u) = dr(u)/do(u) and Ra(u) = dr(u)/di(u). Please refer

to Section 2 for the definitions of do,di and dr. Rr(u) char-
acterizes the likelihood that u’s friend requests are accepted;
Ra(u) characterizes the probability with which u accepts a
friend request.

To demonstrate the impact of local reciprocities on the
formation of reciprocal edges, we calculate the probabil-
ity of linking back to a parasocial edge as a function of
local reciprocities. Specifically, we first discretize the lo-
cal reciprocity ranging from 0 to 1 to 20 bins. For each
bin b, we collect all parasocial edges in G(20) whose tail
points have Rr(u) in b or head points have Ra(u) in b, and
compute the corresponding linking-back probability as the
fraction of them that turn to be reciprocal in the last snap-
shot of Google+ or Flickr. Figure 4a shows the linking-back
probability as a function of acceptance local reciprocity. We
conclude that the linking-back probability increases as ac-
ceptance local reciprocity increases. For instance, in Flickr,
users that always reciprocally linked back to friend requests
(i.e., users with acceptance local reciprocity 1) in the past
also always do so in the future. The results of request lo-
cal reciprocity are similar and thus are not shown here for
simplicity. These findings support our speculations and the
predictiveness of the local reciprocity for reciprocity predic-
tion.

4.2 Node attributes

We have node attributes in only Google+ dataset, on which
we will focus in this section. Note that 78% of the Google+
nodes have no available attributes. To avoid the influences
of these missing attributes, we use nodes with at least one
attribute and edges between them.

Recall that each node in the Google+ dataset could have
four attribute types (i.e., School, Major, Employer and City).
Figure 4b shows their impacts on the formation of recipro-
cal edges. The figure was computed as follows: we find all
parasocial edges whose end points have at least 1 attribute
and share 0 or at least 1 attribute of some attribute type in
G(20), then the corresponding linking-back probability is the
fraction of such edges that are reciprocal in the last snapshot.

We observe that the four attribute types have different
impacts on the formation of reciprocal edges. For instance,
sharing the attribute type School triples the linking-back prob-
ability while sharing City just increases the probability by
one third. On one hand, these findings indicate the node at-
tributes are useful for predicting reciprocity. On the other
hand, they inform us to consider the four attribute types
seperately. Note that Hopcroft et al. [15] found that sharing
the same time zone doesn’t increase the linking-back prob-
ability in Twitter. However, we observe that sharing cities
which are more fine-grained location information does in-
crease the linking-back probability. Gong et al. [12] showed
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Fig. 4: The impacts of (a) acceptance local reciprocity, (b) node attributes and (c) edge age on the formation of reciprocal
edges. (b) was obtained with only the Google+ dataset since the Flickr dataset doesn’t have node attributes.

that sharing common node attributes increases the linking-
back probability. However, they didn’t distinguish between
different attribute types. Here, we provide a fine-grained study
about the impact of different attribute types.

4.3 Edge attributes

In general, edge attributes could be messages sent from u to
v, comments/likes u writes to v’s posts/pictures and reply-
ing tweets, etc. For instance, Hopcroft et al. [15] found that
retweeting or replying users’ tweets increases the probabil-
ity of linking back to a parasocial edge in Twitter.

Here, in the Google+ and Flickr datasets, we treat the
age of an edge (u,v) as its edge attribute. Similar to the
measurement studies on local reciprocity and common at-
tributes, we ensemble all parasocial edges in G(20) whose
ages are a, then we compute the linking-back probability
with respect to a as the fraction of these edges that become
reciprocal in the last Google+ or Flickr snapshot. Since the
time resolution of both datasets is a day, we compute the
edge ages with respect to days. For instance, edges with age
0 are the new edges in G(20). Figure 4c shows the linking-
back probability decreases dramatically as the edge age in-
creases from 0 to 3 and decreases relatively slowly when the
edge age ranges from 4 to 20. For instance, linking-back
probability of parasocial edges with age 0 is around 100
times higher than that of the parasocial edges with age 20
in Flickr. These results imply that edge age is useful for pre-
dicting reciprocity.

5 Predicting Reciprocal Edges

In this section, we study the prediction of reciprocal edges.
Given a few social network snapshots, reciprocal edge pre-
diction is to infer which parasocial edges will turn to be re-

ciprocal in the future. First, we discuss the extraction of fea-
tures. Each of the features is supported by either previous
work or our measurement studies in Section 4. Then, we
map the reciprocal edge prediction to an outlier detection
problem.

5.1 Features

We extract two categories of features for each directed edge.
The two categories are single-node features and node-pair
features. Table 2 summarizes these features. Our new fea-
tures are indicated by the star marker * in the table. In the
following, we will elaborate them one by one.

5.1.1 Single-node features

These features are extracted for each node individually. For
an edge (u,v), the single-node features of both u and v are
concatenated.

Degrees [7]: Cheng et al. showed that indegree and outde-
gree and their ratio are useful features for reciprocal edge
prediction. Moreover, Hopcroft et al. [15] also found that
high-degree users link back to high-degree users with a higher
probability. Following Cheng et al., we extract di(u), do(u),
do(u)/di(u) for node u as features.

Local reciprocity: We have shown in Section 4.1 that local
reciprocities impact the formation of reciprocal edges sig-
nificantly. So we extract both acceptance and request local
reciprocities as features.

5.1.2 Node-pair features

We extract three categories of node-pair features for each
edge (u,v). They are structural features, node-attribute and
edge-attribute features.
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Table 2: Summary of features. Our new features are indicated by the marker *.

Categories Names Notations Definitions

Single-node

Degrees
Indegree di(u) |Γi(u)|

Outdegree do(u) |Γo(u)|
Outdegree/Indegree ratio do(u)/di(u) |Γo(u)|/|Γi(u)|

Local reciprocities*
Acceptance reciprocity Ra(u) dr(u)/di(u)

Request reciprocity Rr(u) dr(u)/do(u)

Node-pair

Structures
Common neighbors CNxy(u,v) |Γx(u)∩Γy(v)|, x,y ∈ {i,o, p,r}.
Jaccards coefficients JCxy(u,v) |Γx(u)∩Γy(v)|/|Γx(u)∪Γy(v)|, x,y ∈ {i,o, p,r}

Adamic-Adar AAxyz(u,v) ∑w∈Γx(u)∩Γy(v)
1

log(|Γz(w)|) , x,y,z ∈ {i,o, p,r}

Preferential attachment do(u) ·di(v)
di(u) ·do(v)

Node attributes*
Common attri. neighbors CN−Aa(u,v) |Γa(u)∩Γa(v)| for four attri. types

Attri. Jaccards coefficients JC−Aa(u,v) |Γa(u)∩Γa(v)|/|Γa(u)∪Γa(v)| for four attri. types
Attri. Adamic-Adar AA−Aa(u,v) ∑b∈Γa(u)∩Γa(v)

1
log(|Γs(b)|) for four attri. types

Edge attributes*
Edge age Age(u,v) Time elapsed since (u,v) exists.

Structural features: We extract a few classical link predic-
tion features [24,11] such as common neighbors, jaccard co-
efficients, Adamic-Adar scores and preferential attachment
as structural features.

– Common neighbors (CN) In directed social networks,
there are four types of neighbors for a node, i.e., in-
coming, outgoing, parasocial and reciprocal neighbors.
Thus, two nodes u and v could have 4× 4 = 16 types
of common neighbors. We denote by CNxy(u,v) these
16 types of common neighbors, where x,y ∈ {i,o, p,r}.
Note that CNoi(u,v) is equivalent to the number of two-
step directed paths from u to v, which was shown to be
useful for reciprocal edge prediction [7].

– Jaccard’s coefficients (JC) [32] Jaccard’s coefficient is
a commonly used similarity metric in information re-
trieval. The intuition behind the Jaccard’s coefficient is
to penalize the common social neighbors by the total
number of social neighbors the two users have. Formally,
JCxy =

|Γx(u)∩Γy(v)|
|Γx(u)∪Γy(v)| , where x,y ∈ {i,o, p,r}. Since each

node has 4 kinds of social neighbors, we have 16 types
of Jaccard’s coefficients.

– Adamic-Adar (AA) [1] Intuitively, we want to down-
weight the importance of neighbors that are social hubs.
AA score quantifies this intuition as

AAxyz(u,v) = ∑
w∈Γx(u)∩Γy(v)

1
log(|Γz(w)|)

, where x,y,z ∈ {i,o, p,r}. Totally, we have 64 AA fea-
tures.

– Preferential attachment (PA) PA is empirically observed
to be a basic mechanism that edge formation follows
in various networks [12,29,5,20]. As was proposed by

Cheng et al. [7], we calculate PA(u,v) = do(u) ·di(v) and
PA(v,u) = di(u) ·do(v) as features.

Note that Cheng et al. [7] only extracted CNii, CNoo, JCii,
JCoo, AAiii and PA as structural features. Hopcroft et al. [15]
used CNrr as features.
Node-attribute features: We have node attributes in only
Google+ dataset, on which we will focus in this section.
However, we want to stress that our ways of extracting node
attributes features can be naturally generalized to other so-
cial networks.

– Common attribute neighbors (CN-A) Recall that we
have shown in Figure 4b that the four attribute types
(i.e., School, Major, Employer and City) have different
impacts on the formation of reciprocal edges. So we con-
sider them seperately. Specifically, we extract the num-
ber of common attribute neighbors for each attribute type
as features.

– Attribute Jaccard’s coefficients (JC-A)/Adamic-Adar
(AA-A) Similar to structural JC and AA features, we
downweight the importance of a common attribute with
either the total number of attributes the two users have or
the number of social neighbors of the attribute. Formally,
attribute JC is defined as JC−Aa(u,v) = |Γa(u)∩Γa(v)|

|Γa(u)∪Γa(v)| ; at-
tribute AA is defined as

AA−Aa(u,v) = ∑
b∈Γa(u)∩Γa(v)

1
log(|Γs(b)|)

. Again, we extract these features for the four attribute
types seperately.

Edge-attribute features: We have shown in Figure 4c that
edge age impacts the formation of reciprocal edges signif-
icantly. So we extract a feature from the edge age. For a
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parasocial edge, this feature is simply its age. However, it’s
trickier to extract this feature for a reciprocal edge. Note that
most of the reciprocal edges could have large ages since they
might appear a long time ago, making them indistinguish-
able with large-age parasocial edges. However, a reciprocal
edge might have a small age at the time when it became re-
ciprocal. So we extract this age as the feature.

5.2 Modeling reciprocal edge prediction as outlier detection

Previous studies treat reciprocal edge prediction as either a
supervised [7] or a semi-supervised learning problem [15].
With snapshot G(t), their approaches treat reciprocal edges
as positive examples and sample some parasocial edges as
negative examples when training the models. However, the
parasocial edges in G(t) are also test examples in G(t+1) and
some of the sampled ones might have become positive in
G(t+1). Figure 1 demonstrates such an issue. In G(t), edge
(w,u) is a positive example, and edge (v,u) is sampled as a
negative example. However, (v,u) turns to be positive in the
test snapshot G(t+1). As a result, the better their trained mod-
els are, the worse generalization performances they possibly
achieve.

Actually, in the setting of reciprocal edge prediction, we
can only observe positive examples (i.e., reciprocal edges).
So we propose to model reciprocal edge prediction as an out-
lier detection problem with known positive examples. We’ll
use one-class Support Vector Machine [26] as an outlier de-
tector.

6 Evaluations

We show our experimental results of reciprocal edge predic-
tion. First, we introduce our experimental setup. Then we
compare our proposal with previous approaches.

6.1 Experimental setup

In the following, we will cover the construction of the train-
ing and test datasets, approaches we compare our proposal
with, data normalization techniques we apply to the feature
matrix, and metrics adopted.

Training and test: According to the definition, reciprocal
edges exist as pairs of edges. For instance, both (w,u) and
(u,w) in Figure 1 are reciprocal edges. However, to make
our description more clear, for a pair of reciprocal edges,
we only call the one that appeared earlier as a reciprocal
edge in the entire Section 6. To continue the above example,
only (w,u) is called reciprocal since it appeared earlier than
(u,w). Intuitively, these newly defined reciprocal edges are

Table 3: Statistics of the training and test datasets.

Training Test
Reciprocal Parasocial Reciprocal Parasocial

Google+ 11,993,458 16,250,289 1,186,903 15,063,386
Flickr 8,211,426 9,906,869 139,762 9,767,107

friend requests that are already accepted. However, we keep
the original definition of parasocial edges.

Around 78% of users have no available node attributes
in the Google+ dataset. Thus, in order to avoid the influences
of the missing attributes, we further preprocess Google+ via
only keeping nodes with at least one attribute and edges be-
tween them. However, we should point out that the features
of an edge are still extracted from the original Google+.

We use G(20) of Flickr and the preprocessed Google+ as
the training dataset. Note that the parasocial edges in G(20)

are also the test dataset. We choose G(20) to construct the
training and test datasets because we can extract edge age
features for the edges in them and the parasocial edges have
enough time to become reciprocal in the last snapshots if
they would be.

In the training phase, we treat the reciprocal edges in
G(20) as positive training examples. These positive exam-
ples are enough to train the outlier detection model. How-
ever, supervised and semi-supervised learning models also
require negative examples. So, as was done in [7,15], we
sample αP parasocial edges in G(20) and treat them as neg-
ative examples, where P is the number of positive training
examples. Note that some of the sampled training negative
examples are also test positive examples, possibly resulting
in bad generalization performances. So we design two sam-
pling strategies, i.e., random and edge-age sampling. Ran-
dom sampling means we sample the αP negative examples
uniformly at random. Recall that Figure 4c shows paraso-
cial edges with larger edge ages are less likely to be recipro-
cal in the future. So, in order to reduce the number of sam-
pled training negative examples that are also test positive
examples, we design edge-age sampling, which samples the
αP negative examples with the largest edge ages. We use 2-
fold cross validation and grid search to learn the model hy-
perparameters. Since this procesure is time-consuming, we
perform it with 10% of the training examples sampled uni-
formly at random. Then we retrain the models on the full
training data with the learned hyperparameters. In the test
phase, a parasocial edge in G(20) is a test positive example
if it’s reciprocal in the last snapshot of Google+ or Flickr,
otherwise it’s a test negative example.

Table 3 shows the statistics of the training and test datasets.
7.3% and 1.4% of the training parasocial edges turn to be
test reciprocal ones in Google+ and Flickr respectively. These
edges make the supervised and semi-supervised learning ap-
proaches achieve bad test performances. We note that 9.9%
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Fig. 5: Comparisons between our proposal and previous approaches in the Google+ and Flickr social networks.

of the parasocial edges in G(20) turn to be test reciprocal
ones in the original Google+ dataset.

Comparisons: We compare the following approaches.

– SVM-R Binary SVM [9] with the random sampling strat-
egy to sample the negative examples.

– SVM-A Binary SVM with the edge-age sampling strat-
egy.

– TriFG-R TriFG [15] is a semi-supervised learning frame-
work based on a factor graphical model. Apart from all
the features discussed in Section 5.1, TriFG also incor-
porates structural balance [6] by modeling it as a factor
in the factor graphical model. So we also extract struc-
tural balance features as was done in Hopcroft [15] when
testing TriFG. TriFG-R samples the negative examples
with the random sampling strategy.

– TriFG-A TriFG with the edge-age sampling strategy.
– OC-SVM One-class Support Vector Machine [26] is an

outlier detector with known positive examples. Note that
we don’t need to sample negative examples for OC-SVM.

We only consider linear kernels for SVM and OC-SVM
due to scalability issues. We use LIBSVM4 for OC-SVM

4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

implementation and LIBLINEAR5 for SVM implement. LI-
BLINEAR’s linear SVM implementation is much faster than
LIBSVM’s. However, LIBLINEAR doesn’t have OC-SVM
implementation for now. TriFG implementation was obtained
from the authors [15]. All these algorithms were run on a
machine with 500GB main memory and 32 cores.

Data normalization: We ensemble all the feature vectors
into a feature matrix, rows of which correspond to edges and
columns of which correspond to features. It’s well known
that the performances of many machine learning algorithms
are sensitive to data normalizations. So we apply three nor-
malization techniques to this feature matrix. They are i) col-
umn normalization, which normalizes each column of the
feature matrix to have mean 0 and variance 1, ii) row nor-
maliztion, which normalizes each row to have L2 norm 1,
and iii) column-row normaliztion, which sequentially ap-
plies column and row normalizations to the feature matrix.

We find that algorithms tested in the following perform
the best with different normalization techniques. However,
we will only show the results with the best normalization
for simplicity.

Metric: The number of reciprocal and parasocial edges are
highly imbalanced in the test phase. Thus accuracy is not

5 http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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an appropriate metric. For instance, a naive model which
always outputs negative can already achieve test accuracy
0.986 in Flickr and 0.927 in Google+. So, as was done in
Hopcroft et al. [15], we adopt Precision, Recall and F1 as
the metrics. Precision is the portion of predicted positive ex-
amples that are true reciprocal edges. Recall is the portion of
true reciprocal edges that are predicted as positive. F1 score
is the harmonic mean of Precision and Recall.

6.2 Comparison results

Figure 5 shows the test performances of the approaches as
functions of the sampling ratio α . α ≥ 1.5 corresponds to
the scenario in which all parasocial edges are sampled as
negative examples. We have the following observations.

Google+ vs. Flickr: Google+ and Flickr achieve quanti-
tatively different performances. Overall, it is easier to pre-
dict reciprocal edges in Google+ than in Flickr. For instance,
Google+ achieves around 0.8 Precision while Flickr achieves
around 0.4 Precision for OC-SVM. Moreover, they behave
qualitatively differently with respect to F1 scores. Specifi-
cally, F1 score decreases in Google+ while it increases in
Flickr as the sampling ratio α increases for all approaches
except OC-SVM. We find that one reason is that the Google+
dataset has node attributes while the Flickr dataset does not6.
We speculate another reason is that the Google+ dataset rep-
resents an OSN’s early stage while the Flickr dataset repre-
sents an OSN’s steady stage.

OC-SVM vs. SVM and TriFG: OC-SVM achieves better
F1 scores than SVM and TriFG approaches in both Google+
and Flickr datasets. On one hand, SVM and TriFG approaches
sample some parasocial edges as negative examples in the
training phase. However, around 7.3% and 1.4% of them
are also test positive examples in Google+ and Flickr re-
spectively, which cause bad test performances. On the other
hand, OC-SVM doesn’t use the parasocial edges in the train-
ing phase, thus avoids this issue.

Random sampling vs. edge-age sampling: Edge-age sam-
pling achieves better Recall than random sampling for both
SVM and TriFG approaches. We take SVM with the sam-
pling ratio α = 1.0 and Google+ as an example to illustrate
the reason. Specifically, 875,989 sampled negative examples
are actually test positive examples with random sampling
and 580,726 of them are classified as negative in the train-
ing and test phases. However, the number of such examples
decreases to 567,620 with edge-age sampling and 440,346
of them are classified as negative. The behavior of Preci-
sion is more complicated. Specifically, edge-age sampling
slightly helps TriFG but makes SVM perform worse. The

6 Our experimental results show that performances in Google+ de-
crease if we do not use features related to node attributes. We do not
show the corresponding results for brevity.

reason might be that the subset of parasocial edges sampled
by edge-age sampling are biased to have large edge ages,
which decreases SVM-A’s Precision.

Impact of the sampling ratio: For SVM approaches, Pre-
cision increases and Recall decreases as the sampling ratio
α increases. On one hand, a larger α treats more paraso-
cial edges as training negative examples and thus classifies
more test reciprocal edges as negative, which explains the
decreasing Recall. On the other hand, a larger α also cor-
rectly classifies more test parasocial edges as negative and
thus decreases the number of test parasocial edges among
the predicted reciprocal edges, which increases the Preci-
sion. However, the behavior of the F1 score depends on so-
cial networks. Specifically, SVM’s performances increase in
Google+ but decrease in Flickr when α goes to 0. Interest-
ingly, TriFG approaches are relatively robust to the selection
of α with respect to all the three metrics. We speculate the
reason is that TriFG incorporates structural balance infor-
mation.

7 Related Work

We first briefly review previous measurement studies involv-
ing reciprocity, then we review approaches to predict re-
ciprocal edges. Finally, we discuss the differences between
reciprocal edge prediction and other classical link mining
tasks.

Measuring reciprocity: A few studies looked into the reci-
procity (i.e., the fraction of links that are symmetric) in a
static snapshot of an OSN. For instance, Mislove et al. [28]
measured the reciprocity to be 0.62 on Flickr and 0.79 on
YouTube, and Kwak et al. [19] measured the reciprocity to
be 0.22 on Twitter. More recently, Gong et al. [12] explored
the evolution of reciprocity and found that Google+’s reci-
procity decreases as Google+ evolves.

Zlati et al. [41] and Lopez et al. [39] discussed the influ-
ence of reciprocity on degree correlations. Akoglu et al. [3]
quantified reciprocity in weighted communication networks
(e.g., phone call network). Singhal et al. [36] studied reci-
procity and its evolution in three related interaction net-
works (i.e., chat, trade, and trust networks) which describe
behaviors of users in an online game. They also found that
features extracted from multiple networks can enhance the
prediction accuracy of reciprocity. Seshadhri et al. [35] pro-
posed a collection of directed closure metrics for directed
networks with reciprocal edges, and they found that recipro-
cal edges significantly influence the formation of triangles.

Cheng et al. [7] found that reciprocal version has a higher
average clustering coefficient than parasocial version in their
Twitter interaction network, which implies that friendship
networks (e.g., Google+ and Flickr) and the interaction net-
work have different local structures of reciprocal and paraso-
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cial edges. Hopcroft et al. [15] found that, in a Twitter fol-
lower network, network structure, users’ social status and
interactions influence the formation of reciprocal edges.

Predicting reciprocal edges: Cheng et al. [7] treated re-
ciprocal edge prediction as a supervised learning problem.
Hopcroft et al. [15] constructed a semi-supervised learning
framework for reciprocal edge prediction. These approaches
require negative training examples, which are sampled from
parasocial edges. Unfortunately, these sampled negative ex-
amples are also test examples, and some of them will turn
to be positive in the test phase, which possibly decreases
the generalization performances. On the contrary, we iden-
tify the reciprocal edge prediction is better modeled as an
outlier detection problem.

Differences with other link mining tasks: reciprocal edge
prediction is related to a few other link mining tasks such as
link prediction and link sign prediction.

The link prediction problem aims to identify links that
are missing in the current network snapshot but are possi-
ble to appear in the near future [24,11,33,34,14]. reciprocal
edge prediction and link prediction differ in several impor-
tant aspects. First, previous work [7] has shown that features
working well for link prediction are not the most effective
ones for reciprocal edge prediction. Second, in the setting
of reciprocal edge prediction, a parasocial edge already ex-
ists between two nodes, from which we can extract features
(e.g., edge age). Third, they have very different domains.
Specifically, the domain of the link prediction problem in-
cludes all non-existing links in the network, which is huge.
However, the domain of the reciprocal edge prediction prob-
lem consists of the parasocial links, which is much smaller.
The domain sizes have significant impact on the efficiency
of the corresponding algorithms.

The link sign prediction [22] classifies social relation-
ships to be either positive (e.g., friendship) or negative (e.g.,
opposition or antagonism). This forms interesting contrasts
with reciprocal edge prediction in the sense that reciprocal
and parasocial links can easily exhibit either type of sign.

8 Conclusion and Future Work

In this paper, we first compare the structures and evolutions
of reciprocal edges with those of parasocial edges in Google+
and Flickr. We find that reciprocal edges are more likely to
connect users with similar degrees while parasocial edges
are more likely to link ordinary users (e.g., low-degree users)
and popular users (e.g., celebrities). However, the impacts
of reciprocal edges linking ordinary and popular users on
the network structures increase slowly as the social networks
evolve. Moreover, parasocial edges, although making nodes’
parasocial neighbors more than their reciprocal neighbors,
connect the parasocial neighbors more tightly. Second, we

find that user behaviors, node attributes, and edge attributes
all have significant influences on the formation of recipro-
cal edges. Third, in contrast to previous studies that treat
reciprocal edge prediction as either a supervised or a semi-
supervised learning problem, we identify that reciprocal edge
prediction is better modeled as an outlier detection problem.
Finally, we perform extensive evaluations with the Google+
and Flickr datasets, and we demonstrate that our proposal
outperforms previous ones.

A few interesting future work includes designing a di-
rected network model that matches real networks with re-
spect to not only directed network metrics but also undi-
rected ones of the corresponding parasocial and reciprocal
versions, designing an outlier detecter incorporating the struc-
tural balance features, and exploring applications of our re-
sults in discovering users’ lifestyles [38] and linking users
across communities and multiple online social networks [25].
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