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Abstract

We propose a probabilistic model for clustering Boolearadethere an object can be simultane-
ously assigned to multiple clusters. By explicitly modglte underlying generative process that
combines the individual source emissions, highly stretudata are expressed with substantially
fewer clusters compared to single-assignment clusteAis@ consequence, such a model provides
robust parameter estimators even when the number of saisptas. We extend the model with
different noise processes and demonstrate that maxinketiklood estimation with multiple as-
signments consistently infers source parameters moreatetyithan single-assignment clustering.
Our model is primarily motivated by the task of role mining fole-based access control, where
users of a system are assigned one or more roles. In expésinvéh real-world access-control
data, our model exhibits better generalization perforraaghan state-of-the-art approaches.

Keywords: clustering, multi-assignments, overlapping clustersylBan data, role mining, latent
feature models

1. Introduction

Clustering defines the unsupervised learning task of grouping a sataftdms into subsets such
that items in the same group are similar. While clustering data into disjoint clustensdsmtually
simple, the exclusive assignment of data to clusters is often overly resrieSpecially when data
is structured. In this work, we advocate a notion of clustering that is not linbdg@hrtitioning
the data set. More generally, we examine the task of inferring the hiddextusuesponsible for
generating the data. Specifically, multiple clusters can simultaneously geaetata item using
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a problem dependent link function. By adopting a generative viewpaiot) data originate from
multiple sources.

Consider, for instance, individuals’ movie preferences. A persontigiong to the “comedy”
cluster or the “classics” cluster, where each cluster membership genarpteference for the re-
spective genre of movies. However, some people like both comedy mowdes$amsics. In standard
single-assignment clustering, a third “comedyé&classics” cluster wouldésged for them. Under
the generative viewpoint, we may assign individuals simultaneously to bottedirtginal clus-
ters to explain their preferences. Note that this differs from “fuzzy%wting, where objects are
partially assigned to clusters such that these fractional assignments dHésb “mixed member-
ship”) add up to 1. In our approach, an object can be assigned to multigkersat the same time
that is, the assignments of an object can sum to a number larger than 1. Mbipbe a second
cluster does not decrease the intensity of the membership in the first cl¥steall this approach
multi-assignment clusteringAC).

In a generative model that supports multi-assignments, one must spewify t@mbination of
sources generates an object. In this paper, we investigate clusterBgdi@an data. The combined
emissions from individual sources generate an object by the Booleayp®ftion. In the example
of the movie preferences, this means that an individual belonging to botbmiedy and the classics
cluster likes a comedy film like “Ghostbusters” as much as someone from thedyocluster, and
likes the classic movie “Casablanca” as much as someone who only belongstagbics group.

In this paper, we develop a probabilistic model for structured Boolean étaexamine var-
ious application-specific noise processes that account for the irrggdan the data and we the-
oretically investigate the relationships among these variants. Our experinmentstizat multi-
assignment clustering computes more precise parameter estimates than-gtatarottlustering
approaches. As a real-world application, our model defines a nodéehighly competitive solu-
tion to therole mining problem. This task requires to infer a user-role assignment matrix and a
role-permission assignment matrix from a Boolean user-permission assigrefaion defining an
access-control system. The generalization ability of our model in this donugreidorms other
multi-assignment techniques.

The remainder of this paper is organized as follows. In the next sectmaywvey the literature
on Boolean matrix factorization and the clustering of Boolean data. In Se8tiore derive our
generative model and its variants and describe parameter inferencetionSe In Section 5, we
present experiments on synthetic and real-world data generated fromlesttipces.

2. Related Work

In this section, we provide an overview of existing methods for the explgrattalysis of Boolean
data. The described approaches have been developed within diffesearch areas and have dif-
ferent objectives. However, they all aim to produce a structure@septation of given binary data.
The research areas include association-rule mining, formal concalysa) clustering, dimension
reduction, latent feature models, and database tiling. We distinguish betagtbods that search
for an exact representation of the data and methods that approximateitbeergation. In the fol-
lowing, we review several related problem formulations and compare ghreaghes used to solve
them.
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2.1 Problem Formulations

There are different problem formulations that arise in the context ofédgmomatrix factorization.
In this section, we explain the most characteristic ones and relate them toteach

2.1.1 EXACT BOOLEAN MATRIX DECOMPOSITION ANDEQUIVALENT PROBLEMS

These methods aim at an exact Boolean factorization of the input matrixedrhiest formulation
of such problems is presumably the set-cover problem (also called $&pbaislem) presented by
Gimpel (1974) and Cormen et al. (2001).

Definition 1 (Set-Cover Problem) Given a set of finite sete = {x1,X2,...,Xn}, find a basisu =
{u1,uy,...,ux } with minimal cardinality K such that eack can be represented as a union of a
subset ofi.

All sets inx have a vector representation irDadimensional Boolean space, where a 1 at dimen-
siond indicates the membership of itethin the respective setD is the cardinality of the union

of X1,Xp,...,xn. The matrixz € {0,1}N*K then indicates which subsets ofcover the sets ix:

Zx = 1 indicates that, coversx;. Using this notation, the set-covering problem is equivalent to
finding an exact Boolean decomposition of a binary matrixith minimal K. An exact Boolean
decomposition ix = zx U, where the Boolean matrix produeis defined such that

K
Xid =\ (2K AUkg) - 1)
k=1
Belohlavek and Vychodil (2010) show that the set cover problem is/algumt to Boolean factor
analysis, where each factor corresponds to a row.oKeprt and Snasel (2004) show that the
factors together with the objects assigned to them can, in turn, be regagsdednal concepts as
defined in the field of Formal Concept Analysis (FCA) by Ganter and Wilg99). Stockmeyer
(1975) shows that the set-cover problem is NP-hard and the condisigodecision problem is
NP-complete. Since the set-cover problem is equivalent to the other prebikis also holds for
Boolean factor analysis, finding the exact Boolean decomposition of aybmatrix, and FCA.
Approximation heuristics exist and are presented below.

2.1.2 APPROXIMATE BOOLEAN MATRIX DECOMPOSITION

An approximate decomposition of a matwxs often more useful than an exact one. One can dis-
tinguish two problems, which we refer to as the lossy compression probl€m)@&nd the structure
inference problem (SIP). For LCP, two different formulations existhinfirst formulation of Miet-
tinen et al. (2006), the size of the mattixs fixed and the reconstruction error is to be minimized.

Definition 2 (LCP1: Minimal Deviation for given K) For a given binary Nx D matrix x and a
given number K< min(N, D), find an Nx K matrix z and a Kx D matrix u such that the deviation
||Xx —z=ul| is minimal.

Alternatively, the deviation is given, as in Vaidya et al. (2007), and the minimaadu must be
found to approximate.

Definition 3 (LCP2: Minimal K for Given Deviation) For a given binary Nx D matrix x and a
given deviatiord, find the smallest number K min(N,D), a N x K matrix z, and a Kx D matrix
u such that|x —zxul|| <.
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x € {0,1}N<P output u € {0,1}KxP

zc {0,1}NxK
*

Figure 1: Dimensions of input data and output of the problems defined inibafis 1—4.

The norm in both formulations of LCP is usually the Hamming distance. Both predee NP-hard
as shown by Vaidya et al. (2007).

In the structure inference problem (SIP), the matrix assumed to be generated from a structure
part (*,u*) and a random noise part. The goal is to find the decompositiom*] that recovers the
structure and disregards the noise.

Definition 4 (SIP) Let the binary Nx D matrix x be given. Assuming thatwas generated from a
hidden structuréz*,u*) and perturbed by nois® such thatx ~ p(x|©, z* xu*), infer the underlying
structure(z*,u*).

There is a substantial difference between SIP and the two lossy compressblems LCP1 and
LCP2. Assuming that some of the entries are corrupted, neither the ciggasiximation of the
original matrix nor the best compression is desirable. Instead, the godhigta structure under-
lying the data at hand rather than to decompose the matrix with the highestip@ssibracy. Since
the structure of the data is repeated across the samples, whereas itsin@galiar, better structure
recovery will also provide better prediction of new samples or missing vatens.

2.2 Approaches

Depending on the problem formulation, there are several ways howdtwifation problems are
approached. In this section we provide an overview over related methods

2.2.1 (OMBINATORIAL APPROACHES

The problems LCP1 and LCP2 are NP-hard. Heuristic methods to find»apyaite solutions usu-
ally construct candidate sets for the rows of the matriand then greedily pick candidates such
that, in each step, the reconstruction error is minimal. For the set covenbtepr defined in Cor-
men et al. (2001), the candidate set is the set of all possible formal mtsndeor the approximate
decomposition problem described in Miettinen et al. (2006), candidatesarputed using asso-
ciation rule mining as presented in Agrawal et al. (1993). A predefinesbeu of candidates is
then iteratively chosen and assigned to the objects such that, in each stdptdtset is optimally
approximated. We will refer to this algorithm, originally presented in Miettinen.¢2806), as the
Discrete Basis Problem Solver (DBPS) and use Miettinen’s implementation BE@Bsome of our
experiments. In the greedy algorithm proposed in Belohlavek and Vylq26d 0), the construction
of a large candidate set is avoided by iteratively constructing the neixthedidate.
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2.2.2 MODEL-BASED APPROACHES

Solutions to the structure inference problem as presented in Wood et @06)(2
Singliar and Hauskrecht (2006), Kaban and Bingham (2008), armicBtet al. (2009) are often
based on probabilistic models. The likelihood that is most similar to the one wes®ap the
noisy-OR gate introduced in Pearl (1988). Our model allows randomiflipsth directions. The
noisy-OR model, which is constrained to random bit flips from zeros to,imtais a special case of
the noise model that we present in Section 3.2.4. A detailed comparison efdktiemship between
the noisy-OR model and our approach follows in Section 3.

There are two models that use a noisy-OR likelihood. Noisy-OR componatytsis (NOCA),
as in Singliar and Hauskrecht (2006), is based on a variational irfemgorithm by Jaakkola and
Jordan (1999). This algorithm computes the global probabilities = 1), but does not return a
complete decomposition. A non-parametric model based on the IndiantBudfeess (Griffiths
and Ghahramani, 2011) and a noisy-OR likelihood is presented in Wodd(2086). We call this
approach infinite noisy-OR (INO). Our method differs from INO with resfdo the data likelihood
and with respect to optimization. While our model yields an exact solution tomoxximate model,
replacing the binary assignments by probabilistic assignments, the infeneroeelure for INO aims
at solving the exact model by sampling. INO is a latent feature model, asliEsby Ghahramani
et al. (2007), with Boolean features. Latent feature models explain gatnbbinations of multiple
features that are indicated as active (or inactive) in a binary matiBeing a member in multiple
clusters (encoded ip) is technically equivalent to having multiple features activated.

Binary independent component analysis (BICA) of Kaban and Bing28@8) is a factor model
for binary data. The combination of the binary factors is modeled with lineaghige and thus
deviates from the goal of finding binary decompositions as we definediteabHowever, the
method can be adapted to solve binary decomposition problems and perfetinswder certain
conditions as we will demonstrate in Section 5.2.

Two other model-based approaches for clustering binary data arestd$ed to our model, al-
though more distantly. Kemp et al. (2006) presented a biclustering method férat doncepts in
a probabilistic fashion. Each object and each feature is assigned tola Isicigster. A Dirichlet
process prior (Antoniak, 1974; Ferguson, 1973) and a Beta-Bé#rfikelihood model the assign-
ments of the objects. Heller and Ghahramani (2007) presented a Bayesiggarametric mixture
model including multiple assignments of objects to binary or real-valued cestiien an object
belongs to multiple clusters, the product over the probability distributions ofdillidual mixtures
is considered, which corresponds to the conjunction of the mixtures. @hgitutes a probabilistic
model of the Boolean AND, whereas in all the above methods mentioned |lessvire our model,
the data generation process uses the OR operation to combine mixture cotspone

In this paper, we provide a detailed derivation and an in-depth analys$ieeahodel that we
proposed in Streich et al. (2009). We thereby extend the noise par afdkel to several variants
and unify them in a general form. Moreover, we provide an approacthé model-order selection
problem.

2.3 Applications

There are numerous applications for Boolean matrix factorization. In thierpee will focus on one
specific application, the role mining problem, which was first formulated byidahn et al. (2003).
This problem can be approached as a multi-assignment clustering prahtamrsrole mining the
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associated data sets are clearly generated by multiple sources. Our medebtiated by this
security-relevant problem. In the following, we will describe this problem give representative
examples of the main role mining methods that have been developed.

2.3.1 ROLE MINING AND RBAC

The goal of role mining is to automatically decompose a binary user-permissananent matrix

X into a role-based access control (RBAC) configuration consisting mfeaybuser-role assignment
matrix z and a binary role-permission assignment matrixRBAC, as defined in Ferraiolo et al.
(2001), is a widely used technique for administrating access-contrtdragswhere users access
sensitive resources. Instead of directly assigning permissions tq users are assigned to one
or more roles (represented by the matz)xand obtain the permissions contained in these roles
(represented by).

The major advantages of RBAC over a direct user-permission assigijem@aded in the ma-
trix x) are ease of maintenance and increased security. RBAC simplifies maicedioamwo rea-
sons. First, roles can be associated with business roles, i.e. tasks itegorisa. This business
perspective on the user is more intuitive for humans than directly assigniingdnal low-level
permissions. Second, assigning users to just a few roles is easier sigmirag them to hundreds
of individual permissions. RBAC increases security over accesget@m a user-permission level
because it simplifies the implementation and the audit of security policies. Alsoleggdikely
that an administrator wrongly assigns a permission to a user. RBAC is tyrtem access control
solution of choice for many mid-size and large-scale enterprises.

2.3.2 SRUCTURE AND EXCEPTIONS INACCESSCONTROL MATRICES

The regularities of an access control mag;such as permissions that are assigned together to many
users, constitute the structurexofExceptional user-permission assignments are not replicated over
the users and thus do not contribute to the structure. There are theemsdar the existence of
such exceptional assignments. First, exceptional assignments are rafitéedgfor ‘special’ tasks,
for example if an employee temporarily substitutes for a colleague. Sucptextemay initially be
well-motivated, but often the administrator forgets to remove them when thewadenger carries
out the exceptional task. The second reason for exceptional assighimeasimply administrative
mistakes. Errors may happen when a new employee enters the compagygn@sons might not
be correctly updated when an employee changes position within the conipaally, exceptional
assignments can be intentionally granted to employees carrying out higlehaléped tasks.

The role mining step should ideally migrate the regularities of the assignment maifkBAC,
while filtering out the remaining exceptional permission assignments. We meceptonal as-
signments (all three cases) with a noise model described in Section 3.2.eWetaaware of any
way to distinguish these three cases when only user-permission assigmmeegigen as an input.
However, being able to separate exceptional assignments from the trimatve data substantially
eases the manual search for errors.

2.3.3 RIORART

There is no consensus in the literature on the objective of role mining. Awievweof all existing
problem definitions is provided in Frank et al. (2010). We consider rolengias an inference
problem, which we defined in Definition 4. Numerous algorithms for role minirmgt.elolloy et al.
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(2008) apply an algorithm from formal concept analysis (see Gantel\lte, 1999) to construct
candidate roles (rows in). The technigue presented in Vaidya et al. (2007) uses an improved
version of the database tiling algorithm from Han et al. (2000). In conivabe method presented

in Agrawal and Srikant (1994), their tiling algorithm avoids the construatiaall concepts by using

an oracle for the next best concept. A method based on a probabilistid immqudeposed in Frank

et al. (2008). The model is derived from the logical representatiorBaicdean two-level hierarchy
and is divided into several subcases. For one of the cases with onlg aggjgnments of objects,
the bi-clustering method presented in Kemp et al. (2006) is used for irckeren

3. Generative Model for Boolean Data from Multiple Sources

In this section we explain our model of the generation process of binday ddere data may
be generated by multiple clusters. The observed data stems from an umglsthycture that is
perturbed by noise. We will first present our model for the structurk afterwards provide a
unifying view on several noise processes presented in the literature.

We use a probabilistic model that describes the generative procesfiathigo advantages over
discrete optimization approaches. First, considering a separate notsspifor the irregularities
of the data yields an interpretation for deviations between the input mataind its decomposi-
tion (z,u). Second, the probabilistic representation of the soundssa relaxation of the original
computationally hard problem, as explained in the previous sections.

Let the observed data consist fobjects each associated with binary dimensions More
formally, we denote the data matrix By with x € {0,1}N*P. We denote thé" row of the matrix
by xi., and thed™ column byx.q. We use this notation for all matrices.

3.1 Structure Model

The systematic regularities of the observed data are captured by its struMore specifically,
the sources associated with the clusters generate the struétar€0, 1}N*P. The association of
data items to sources is encoded in the binary assignment raatr{0, 1}N*X, with z, = 1 if and
only if the data item belongs to the sourde andzx = 0 otherwise. The sum of the assignment
variables for the data item ¥, zx, can be larger than 1, which denotes that a data itismassigned
to multiple clusters. This multiplicity gives rise to the namlti-assignment clusterinMAC).
The sources are encoded as rows af {0, 1}N*K,

Let the set of the sources of an objecthe= {k € {1,...,K} |zx = 1}. Let L be the set of all
possibleassignment set@nd L € [ be one such an assignment set. The valug?jd[s a Boolean
disjunction of the values at dimensiolnof all sources to which objedtis assigned. The Boolean
disjunction in the generation process ofx%uresults in a probability fonr<ﬁ'j =1, which is strictly
non-decreasing in the number of associated soyuGésIf any of the sources i, emits a 1 in
dimensiond, thenx?, = 1. Converselyx? = 0 requires that all contributing sources have emitted a
0 in dimensiord.

Let Byq be the probability that sourdeemits a 0 at dimensiod: Bxq := p(Ukg = 0). This
parameter matrig € [0, 1]¥*P allows us to simplify notation and to write

K
Ps(Xa =01[z.,B) =[]B&s  andps(xg=1/2:,B) =1-ps(xg =01z:.B).
k=1
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The parameter matri@ encodes these probabilities for all sources and dimensions. Employing the
notion of assignment sets, one can interpret the product

K
= Zik 2
Brd |D1 Bia ()

as the source of the assignment setHowever, note that this interpretation differs from an actual
single-assignment setting whdre= |L| independent sources are assumed and must be inferred.
Here, we only hav& x D parameteryy whereas in single-assignment clustering, the number of
source parameters would hex D, which can be up to'2x D. The expressio,,q is rather a
‘proxy’-source, which we introduce just for notational convenienidee probability distribution of

aXig generated from this structure model given the assignmgraad the sourcefs is then

Ps (% | £i,B) = (1—Bra)™ (Bra) . 3)

Note that we include the empty assignment set in the hypothesis class, i.e.ieaataeed not
belong to any class. The corresponding sgivcontains only zeros and any element with the value
1 in the input matrix is explained by the noise process.

In the following sections, we describe various noise models that alter thetaitfhe structure
model. The structure part of the model together with a particular noise ggaseéllustrated in
Figure 2.

3.1.1 SRUCTURECOMPLEXITY AND SINGLE-ASSIGNMENTCLUSTERING

In the general case, which is when no restrictions on the assignmentegfisen, there ark =
2K possible assignment sets. If the number of clusters to which an objeciecsimbltaneously
assigned is bounded By, this number reduces to= yM _ (K).

The particular case witM = 1 provides a model variant that we c8lingle-Assignment Clus-
tering (SAC). In order to endow SAC with the same model complexity as MAC, weigeat with
L clusters. Each of the assignment sets is then identified with one of the clu$teesclusters
are treated (and, in particular, updated) independently of each otherbguting the cluster pa-
rameter{3 .. for each., discarding the dependencies in the original formulation. The underlying
generative model of SAC, as well as the optimality conditions for its parameterde obtained by
treating all assignment sefsindependently in the subsequent equations. With all centroids com-
puted according to Equation 2, the single-assignment clustering model thieldame probability
for the data as the multi-assignment clustering model.

3.2 Noise Models and their Relationship

In this section, we first present tmaixture noise modelwhich interprets the observed data as a
mixture of independent emissions from the structure part and a noiseesdtach bit in the matrix
can thus be generated either by the structure model or by an indepghalgaitnoise process. We
then derive a more general formulation for this noise model. Starting therderive thdlip mode]
where some randomly chosen bits of the signal madtiare flipped, either from 0 to 1 or from 1 to
0. The noisy-OR model (Pearl, 1988) is a special case of the flip noiselpaibwing only flips
fromOto 1.
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The different noise models have different parameters. We denote ibe parameters of a
modela by ©F. The full set of parameters for structure and noise is ®&n= (3,0f). As
additional notation, we use the indicator functigp, for a predicatep, defined as

. 1 if pistrue
"= 1 0 otherwise

3.2.1 MIXTURE NOISEMODEL

In the mixture noise model, eacty is generated either by the signal distribution or by a noise
process. The binary indicator varialflg indicates whethexq is a noisy bit §;q = 1) or a signal
bit (§ig = 0). The observedy is then generated by
Xid = (1— &)Xy + &iaXy »
where the generative process for the signalxﬁitis either described by the deterministic rule in

Equation 1 or by the probability distribution in Equation 3. The noiseg'@ifollows a Bernoulli
distribution that is independent of object indeand dimension inded:

o (49 1) =% (1-1)* % (4)
Here,r is the parameter of the Bernoulli distribution indicating the probability of a 1. Goimgp
the signal and noise distributions, the overall probability of an obsegyes
PR (%a | £i,B,T, &ia) = pr(xia |1 ps(xia| £i, )5 . (5)
We assumé;q to be Bernoulli distributed with a parameter= p(&;q = 1) called thenoise fraction
The joint probability ofxig and&jg given the assignment matrixand all parameters is thus
P (Xa, € 1Z,B,1,€) = pu (Xia | 2,B,1,&) - €8¢ (1—g) 5.

Since differentxy are conditionally independent given the assignmersd the paramete@™X
we have

P~ (.8 |2,B,1) |'||ornIX (%, € [2,B,1).

The noise indicatorg§jg cannot be observed. We therefore marginalize oug;alto derive the
probability ofx as

P (x| z,B,1,€) = ZD”“X (x,&|z,B,r.€)
&
=[] (& pn(Xa) + (1 —€) - Ps(Xia)) -
id

The observed datais thus a mixture between the emissions of the structure part (which has weight
1—¢) and the noise emissions (with weight Introducing the auxiliary variable

qzléi( - prl\DI“X (Xid =1 |Z7 [37 r, 8) =é&r+ (1_ 8) (1_ Bﬂid)
to represent the probability that = 1 under this model, we get a data-centric representation of the
probability ofx as

P (x |2, B.1.€) = |:|(X|d of + (1—xa) (1—df)) - (6)

The parameters of the mixture noise model @ := (g,r). Sincee andr are independent of
d andi, we will refer toe andr as parameters of a ‘global’ noise process.
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B © @

D

Figure 2: The generative model of Boolean MAC with mixture noisgis the assignment set of
objecti, indicating which Boolean sources frangenerated it. The by selects whether
the noise-free bix3 or the noise bik is observed.

3.2.2 (ENERALIZED NOISEMODEL

In this section, we generalize the mixture noise model presented aboveg Bminve achieve a
generalized formulation that covers, among others, the mentioned noisgedg.
The overall generation process has two steps:

1. The signal part of the data is generated according to the sourass@asbed in Section 3.1.
It is defined by the probabilitps (X3 | Zi, ) (Equation 3).

2. Anoise process acts on the sigraind thus generates the observed data matfhis noise
process is described by the probabififi(xq |x§j ,0F), wherea identifies the noise model and
Of are the parameters of the noise moalel

The overall probability of an observatioty given all parameters is thus

ph (Xid | Zi, B, OF) = Z ps (X3 | £i,B) - p* (XX, OF) -
Xid

3.2.3 MIXTURE NOISE MODEL

The mixture noise model assumes that eaghis explained either by the structure model or by
an independent global noise process. Therefore, the joint probaifilg§™ (xiq %3, ©FX) can be
factored as ' _ _ _
P™ (%ia X, OR™) = PR (Xia X X Eia ) - PR (KT
with - :
: —Gid id
o0 (oG &) = (Vogonar) (Motoeal)
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pS(x3 | Li, B) and pli* (X r) are defined by Equation 3 and Equation 4 respectively. Summing out
the unobserved variable§ andx yields

m|x (Xid|Li,B,1,&id) = Z m|x X|d Xidv |d’£’l B,r, Eld)
|d_0 Xid
= pS(Xid‘LhB)liEid ™ (x| r) o
= (1—Eid)ps(xid\£4'7[3)+E|dpr|\T'X(Xid\f) :

Integrating out the noise indicator variablgg leads to the same representation as in Equation 5.

3.2.4 RHIP NOISEMODEL

In contrast to the previous noise model, where the likelihood is a mixturedeipendennoise
and signal distributions, the flip noise model assumes that the effect obtbe depends on the
signal itself. The data is generated from the same signal distribution as in theenioise model.
Individual bits are then randomly selected and flipped. Formally, the géveprocess for a big
is described by

Xid = Xig & &id ,
where® denotes addition modulo 2. Again, the generative process for the stuhn’tuqfj is de-
scribed by either Equation 1 or Equation 3. The valug@findicates whether the biq% is to be
flipped €iq = 1) or not €jq = 0). In a probabilistic formulation, we assume that the indic&gpfor
a bit-flip is distributed according t&q ~ p(&id ]x%,so,sl). Thus, the probability of a bit-flip, given
the signal and the noise paramet@ig ), is

1— S Ed < S l_Eid
e o - (59 (0 )

with the convention that®= 1. Given the flip indicato€;q and the signal bi % the final observa-
tion is deterministic:

f g2 Ly
P (i [€ia X)) = %g ™ d}(1—Xad) (&=}

The joint probability distribution is then given by

B (a5, 01F) = 5 PP (X058 - B0

&ia=0

3.2.5 RELATION BETWEEN THENOISE PARAMETERS

Our unified formulation of the noise models allows us to compare the influenite gfoise pro-
cesses on the clean signal under different noise models. We deripardmmeters of the flip noise
model that is equivalent to a given mixture noise model based on the fliteatp™* (g |XI%,@R|)
and p'iP (xq|x5, ©F), for the case$xq = 1,3 = 0) and (xig = 0,x5 = 1):

The mixture noise model wit®™ = (&,r) is equivalent to the flip noise model wﬂﬂﬂ'p
(e-r,e-(1—r)). Conversely, we have that the flip noise model v@{ﬂf’ (€0,€1) is equivalent to

the mixture noise modelwith G)m'x (£o+sl,

€0t+€1
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Hence the two noise-processes are just different representatitives sdme process. We there-
fore use only the mixture noise model in the remainder of this paper and omitdivatiora to
differentiate between the different noise models.

3.2.6 BIECTFWISE AND DIMENSION-WISE NOISE PROCESSES

In the following, we extend the noise model presented above. Given tlivagznce of mix and flip
noise, we restrict ourselves to the mixture noise model.

Dimension-wise Noise Assume a separate noise process for every dimemkiamich is pa-
rameterized byy and has intensitgy. We then have

p(x|z,B.€) = |'J (sdré“ (L—ra)" ™ + (1—€q) (1—Bra) Bz;fd) .
I:
Object-wise Noise.Now assume a separate noise process for every abjebich is parame-
terized byg; andr;. As before, we have

pOx(2p.8) = [ (8 (1) o+ (1—8) (1 Bra) BLs* )
I
Note that these local noise models are very specific and could be usedfailoheng appli-

cation scenarios. In role mining, some permissions are more critical thars othence it appears
reasonable to assume a lower error probability for the dimension refiregeior example, root
access to a central database server than for the dimension repretiemfiegmission to change the
desktop background image. However we observed experimentally thattigonal freedom in
these models often leads to an over-parametrization and thus worse ogsuité. This problem
could possibly be reduced by introducing further constraints on theneggeas, such as a hierarchi-
cal order.

4. Inference

We now describe an inference algorithm for our model. While the paransetetdtimately inferred
according to the maximum likelihood principle, we use the optimization methalbtgrministic

annealingpresented in Buhmann and Kiihnel (1993) and Rose (1998). In thevioipwe specify

the deterministic annealing scheme used in the algorithm. In Section 4.2 we tbéheysharacter-
istic magnitudes and the update conditions in a general form, independéetbise model. The
particular update equations for the mixture model are then derived in de&sldtion 4.3.

4.1 Annealed Parameter Optimization

The likelihood of a data matrix (Equation 6) is highly non-convex in the model parameters and a
direct maximization of this function will likely be trapped in local optima. Deterministioealing

is an optimization method that parameterizes a smooth transition from the comemrof maxi-
mizing the entropy (i.e. a uniform distribution over all possible clustering saigjito the problem

of minimizing the empirical rislR. The goal of this heuristic is to reduce the risk of being trapped in
a local optimum. Such methods are also known as continuation methods (seeekliynd Georg,
1980). In our caseR s the negative log likelihood. Formally, the Lagrange functional

F:=-TlogZ=Eg[R —TH
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is introduced, withZ being thepartition functionover all possible clustering solutions (see Equa-
tion 10), andG denotes the Gibbs distribution (see Equation 9 and Equation 8). The Igagran
parametef (called thecomputational temperatuyeontrols the trade-off between entropy maxi-
mization and minimization of the empirical risk. Minimizirkgat a given temperaturk is equiva-
lent to constraint minimization of the empirical riskwith a lower limit on the entropyd. In other
words,H is a uniform prior on the likelihood of the clustering solutions. Its weight eases as the
computational temperatufieis incrementally reduced.

At every temperaturd’, a gradient-based expectation-maximization (EM) step computes the
parameters that minimiZe. The E-step computes the risRs: (Equation 7) of assigning data item
i to the assignment s&t. The corresponding responsibilitigg (Equation 8) are computed for all
and L based on the current values of the parameters. The M-step first cabeateptimal values
of the noise parameters. Then it uses these values to compute the optincal gaameterB. The
individual steps are described in Section 4.3.

We determine the initial temperature as described in Rose (1998) and usstantaooling
rate T <9 -T,with0< 9 < 1). The cooling is continued until the responsibilitigs for all data
itemsi peak sharply at single assignment sgts

4.2 Characteristic Magnitudes and Update Conditions

Following our generative approach to clustering, we aim at finding the mamilikelihood solution
for the parameters. Taking the logarithm of the likelihood simplifies the calcutatisproducts be-
come sums. Also, the likelihood function conveniently factors over the olgedtfeatures enabling
us to investigate the risk of objects individually. We defineehgpirical riskof assigning an object
i to the set of cluster& as the negative log-likelihood of the feature vect@rbeing generated by
the sources contained ifx

R :=logp(x.|Li,©) = — Z_ log (Xid (1 —0cd) + (1—Xid)dza) - (7)

Theresponsibilityy; , of the assignment-set for data itemi is given by
4y SPRLT)
| . .
> e eXp(—Rig/T)

The matrixy defines a probability distribution over the space of all clustering solutiohg €k-
pectedempirical riskEg [R] of the solutions under this probability distributi@his

Ec[R.] = Z ZViLRiL : 9
T T

(8)

Finally, thestate sum Z&nd thefree energy Fare defined as follows.
Z:=T]> exp(—R./T) (10)
i T
F:=-TlogZ=-T z log (Z exp(—RiL/T)>
[ L

Given the above, we derive the updates of the model parameters el fost-order condi-
tion of the free energ¥. We therefore introduce the generic model param@terhich stands for
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any of the model parameters, ifec {Bw,so,al,s,r}. Here, L is some particular value of source
indexk andv is some particular value of dimension indéxUsing this notation, the derivative of
the free energy with respect &is given by

(1— 2% )aqLd

szL ZZVILZXM 1- qLd (1 de)qLd'

4.3 Update Conditions for the Mixture Noise Model

Derivatives for the mixture noise moddl € {B.€,r}) are:

aqm|x aqm(ijx aqm|x
3By =(1-¢)Bo\fuyd N v=dy! {uesy> aé =1-r—Bd, y — E
This results in the following first-order conditions for the mixture noise model:
aFmix Zi'x- :1yir2ix ZIX. :OVﬂiX
=(1-c¢ a — b =0,
By ( )L“ZGLBL\{“}N { er+(1-€)(1—Bry) 1—er—(1—€)(1—Brv)
alex _ BLd)le.d lym _r_BLd) 2. Xid= OVnZ -0
AP sr+1 ®) (1 Beo) 21 g (1-e)1-Bea) [
alex

ZI X'd OV"Z _ ZiZXid:lV{T[]/ix .
or Z’{zl er—(1—€)(1—Ba) ;£r+(l—s)(1—BLd)}_o'

There is no analytic expression for the solutions of the above equatiengathmeterfy,, €, and

r are thus determined numerically. In particular, we use Newton’s method tordegethe optimal
values for the parameters. We observed that this method rapidly coavasgally needing at most
5 iterations.

The above equations contain the optimality conditions for the single-assigrolustéring
(SAC) model as a special case. As only assignment Setgth one element are allowed in this
model, we can globally substitute by k and get3,. = Bk«. Furthermore, since 1 is the neutral
element for multiplication, we g€, ;;p v = 1.

In the noise-free case, the value for the noise fraction=4s0. This results in a significant
simplification of the update equations.

5. Experiments

In this section, we first introduce the measures that we employ to evaluateatity @f clustering
solutions. Afterwards, we present results on both synthetic and redd-data.

5.1 Evaluation Criteria

For synthetic data, we evaluate the estimated sources by their Hamming distére&te sources
being used to generate the data. For real-world data, the appropriatateracriteria depend on
the task. Independent of the task, the generalization ability of a solutioratedi®iow well the
solution fits to the unknown underlying probability distribution of the data. Meee as argued in
Frank et al. (2010), the ability of a solution to generalize to previouslyamasers is the appropriate
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quality criterion for the role mining problem. In the following, we introduce thig@ measures,
parameter mismatch and generalization ability.

The following notation will prove useful. We denote byanda the estimated decomposition of
the matrixx. The reconstruction of the matrix based on this decomposition is denotediere
X := Zx 0. Furthermore, in experiments with synthetic data, the signal part of the makuiroign.
As indicated in Section 3, it is denoted b?.

5.1.1 RARAMETER MISMATCH

Experiments with synthetic data allow us to compare the values of the true maodeigiars with
the inferred model parameters. We report below on the accuraciestofigoestimated centroids
and the noise parameters.

To evaluate the accuracy of the centroid estimates, we use the average Hadistance be-
tween the true and the estimated centroids. In order to account for theagrimitimbering of
clusters, we permute the centroid vectogs with a permutatiori(k) such that the estimated and
the true centroids agree best. Namely,

b =G|

qu

in
Pk

wherePx denotes the set of all permutationskoklements. Finding tha € P¢ that minimizes the
Hamming distance involves solving the assignment problem, which can be ¢attulgolynomial
time using the Hungarian algorithm of Kuhn (2010). Whenever we know tigentrodel parameters,
we will assess methods based on parameter mismatch, always reporting thiseringercent.

5.1.2 (ENERALIZATION ERROR

For real world data, the true model parameters are unknown and theré exggh exist a model
mismatch between the learning model and the true underlying distribution thatigghéhe input
data se(. Still, one can measure how well the method infers this distribution by testing if the
estimated distribution generalizes to a second data8ethat has been generated in the same way
asxV. To measure this generalization ability, we first randomly split the data sej tierobjects
into a training sek¥ and a validation set'?). Then we learn the factorizatidn (i based on the
training set and transfer it to the validation set.

Note that the transfer of the learned solution to the validation set is not éghstfarward in
such an unsupervised scenario as it is in classification. For trangfemguse the method proposed
by Frank et al. (2011). For each objédn x?, we compute its nearest neighhgn(i) in x(2 ) ac-
cording to the Hamming distance. We then create a new metdefined byz), = 2y, . for all .

As a consequence, each validation object is assigned to the same sgtcessas its nearest neigh-
bor in the training set. The possible assignment sets as well as the sotaoeetes are thereby
restricted to those that have been trained without seeing the validation Hatgeffieralization error

is then

G(2,0,x?, Pnn) = Z 0

Tone] i

T
with 7' = (ZwNN(l)*’ZwNN(Z)*""’ZwNN(N(Z))*) ’
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(a) Overlapping Sources (b) Orthogonal Sources

Figure 3: Overlapping sources (left) and orthogonal sources (rigigjl in the experiments with
synthetic data. Black indicates a 1 and white a O for the corresponding migineet.
In both cases, the three sources have 24 dimensions.

whereN@ is the number of objects in the validation data set-aigithe Boolean matrix product as
defined in Equation 1. This measure essentially computes the fraction oflamredicted bits in
the new data set.

As some of the matrix entries k12 are interpreted as noise, it might be impossible to reach a
generalization error of 0%. However, this affects all methods and all nvadi@nts. Moreover, we
are ultimately interested in the total order of models with respect to this measireoaim their
absolute scores. Since we assume that the noise associated with thesfehtlifferent objects is
independent, we deduce from a low generalization error that the algoc#inninfer sources that
explain—up to residual noise—the features of new objects from the satribution. In contrast, a
high generalization error implies that the inferred sources wrongly greudist of the matrix entries
and thus indicates overfitting.

Note that the computation of generalization error differs from the appraken in Streich et al.
(2009). There, onlyi is kept fixed, ana is ignored when computing the generalization error. The
assignment sets of the new objects are recomputed by comparing all source combinations with
a fractionk of the bits of these objects. The generalization error is the differenceoéthaining
(1—k) bits to the assigned sources. In our experiments on model-order sel¢uisocpmputation
of generalization error led to overfitting. A was computed independently from fitting all
possible role combinations to the validation data, it supports tuning one pituet eblution to this
data. With the nearest neighbor-based transfér which is computed without using the validation
set, this is not possible. Overfitting is therefore detected more reliably thareiciSet al. (2009).

In order to estimate the quality of a solution, we use parameter mismatch in experiwitn
synthetic data and generalization error in experiments with real data.

5.2 Experiments on Synthetic Data

This section presents results from several experiments on synthetic blata we investigate the
performance of different model variants and other methods. Our iexpets have the following
setting in common. First, we generate data by assigning objects to one or maeaBeectors
out of a set of predefined sources. Unless otherwise stated, we withasggenerating sources as
depicted in Figure 3. Combining the emissions of these sources vi@Rmperation generates
the structure of the objects. Note that the sources can overlap, i.e. multiplesemit a 1 at a
particular dimension. In a second step, we perturb the data set by a noissg

With synthetic data, we control all parameters, namely the number of objettsoances, the
geometry of the Boolean source vectors (i.e. we vary them between gpedasources and or-

474



MULTI-ASSIGNMENTCLUSTERING FORBOOLEAN DATA

thogonal sources), the fraction of bits that are affected by the noiegs, and the kind of noise
process. Knowing the original sources used to generate the databét®ns to measure the accu-
racy of the estimators, as described in Section 5.1. The goal of theseénegpts is to investigate
the behavior of different methods under a wide range of conditions. r@dts will help us in
interpreting the results on real-world data in the next section.

We repeat all experiments ten times, each time with different random noiserefpdet the
median (and 65% percentiles) of the accuracy over these ten runs.

5.2.1 GMPARISON OFMAC WITH OTHER CLUSTERING TECHNIQUES

The main results of the comparison between MAC and other clustering te€lsnéga shown in
Figure 4. Each panel illustrates the results of one of the methods undeifferent experimental
setups. We generate 50 data items from each single source as well asatbrmombination of two
sources. Furthermore, 50 additional data items are generated withautce sice. they contain no
structure. This experimental setting yields 350 data items in total. The overjpgmimces are used
as shown in Figure 3(a), and the structure is randomly perturbed by a mixtise process. The
probability of a noisy bit being 1 is kept fixed at= 0.5, while the fraction of noisy bits, varies
between 0% and 99%. The fraction of data from multiple sources is 50%d@xiberiments plotted
with square markers. Experiments with only 20% (80%) of the data are labledircles (with
stars). Furthermore, we label experiments with orthogonal sourcesr€=3gb)) with 'x’. Finally,
we use '+’ labels for results on data with a noisy-OR noise process,€l.

5.2.2 BNARY INDEPENDENTCOMPONENTANALYSIS (BICA)

BICA has a poor parameter accuracy in all experiments with data frontagypéng clusters. This
behavior is caused by the assumption of orthogonal sources, whictofadéd for such data. BICA

performs better on data that was modified by the symmetric mixture noise ptbaas data from

a noisy-OR noise process. Since BICA does not have a noise modegttheahtaining noise from
the noisy-OR noise process leads to extra 1s in the source estimatorsff@ttisecomes important
when the noise fraction rises above 50%. We observe that, overall rtieate does not vary much
for overlapping sources.

The effect of the source geometry is particularly noticeable. On dataajedeby orthogonal
sources, i.e. when the assumption of BICA is fulfilled, the source parasnatermerfectly recon-
structed for noise levels up to 65%. Only for higher noise levels, doestheacy break down. The
assumption of orthogonal source centroids is essential for BICAmaance as the poor results
on data with non-orthogonal sources show. As more data items are gghbyamultiple, non-
orthogonal sources, the influence of the mismatch between the assumpdientying BICA and
the true data increases. This effect explains why the source paramstateaters for non-orthogonal
centroids become less accurate when going from 20% of multi-assignmef@&oto 8

5.2.3 DSCRETEBASIS PROBLEM SOLVER (DBPS)

Figure 4(b) shows that this method yields accurate source parameter estifoattata generated
by orthogonal sources, and, to a lesser degree, for data sets ttiainca small percentage of
multi-assignment data. As the fraction of multi-assignment data increasegdinaey of DBPS
decreases.
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Figure 4: Accuracy of source parameter estimation for five differerdsygd data sets in terms of
mismatch to the true sources. We use (circle, square, star) symmetric Bienose
and overlapping sources with three different fractions of multi-assighufegta, (x) or-
thogonal sources and symmetric noise, and (+) overlapping sourdesrasisy-or noise
process. Solid lines indicate the median over 10 data sets with random ndidastred
lines show the 65% confidence intervals.

The reason for the low accuracy on multi-assignment data arises fronneadygoptimization
of DBPS. It selects a new source out of a candidate set such thatéxpdain as many objects as
possible by the newly chosen source. In a setting where most of the degatedtby a combination
of sources, DBPS will first select a single source that equals the digjonaf the true sources
because this covers the most 1s. We call this effentbination-singlet confusiolit is a special case
of the typical problem of forward selection. Lacking a generative mémtedource-combinations,
DBPS cannot use the observation of objects generated by sourcénetions to gather evidence
for the individual sources. As a consequence, the first selectedesestimates fit to the source-
combinations and not to the true individual sources. Often, the last stlemtieces are left empty,
leading to a low estimation accuracy.
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Note the effect of a small amount of noise on the accuracy of DBPS. [Eae structure of the
association matrix is perturbed, and the candidates might contain 0s in somsidinse\s a result,
the roles selected in the second and subsequent steps are non-emjyg thaksolution more
similar to the true sources. This results in the interesting effect where theagagdncreases when
going from noise-free matrices to those with small amount of noise (for highise, it decreases
again because of overfitting).

DBPS obtains accurate estimators in the setting where the data is generatttbgpiwal data
(labeled 'x’). Here, the candidate set does not contain sourcesdhaspond to combinations of
true sources, and the greedy optimization algorithm can only select a essdimlrce that corre-
sponds to a true single source. DBPS thus performs best with respeatte parameter estimation
when the generating sources are orthogonal. In contrast to BICAhvideioefits from the explicit
assumption of orthogonal sources, DBPS favors such sourcesdeeatthe properties of its greedy
optimizer.

5.2.4 INFINITE NOISY-OR (INO)

The infinite noisy-OR is a non-parametric Bayesian method. To obtain a siegldt,rwe ap-
proximate the a posteriori distribution by sampling and then choose the paramdite highest
probability. This procedure estimates the maximum a posterior solution. Fudherin contrast
to BICA, DBPS, and all MAC variants, INO determines the number of saubgetself and might
obtain a value different than the number of sources used to generat#hdfdhe number inferred
by INO is smaller than the true number, we choose the closest true soucoespate the parameter
mismatch. If INO estimates a larger set of sources than than the true onesthmétching INO
sources are used. This procedure systematically overestimates thacgooUiNO, whereas INO
actually solves a harder task that includes model-order selection. A deMistioveen the estimated
number of sources and the true number mainly occurs at the mid-noisedppebkimately 30% to
70% noisy bits).

In all settings, except the case where 80% of the data items are generatedtiple sources,
INO yields perfect source estimators up to noise levels of 30%. For highiee levels, its accuracy
rapidly drops. While the generative model underlying INO enables this déthaorrectly interpret
data items generated by multiple sources, a high percentage (80%) ofatachodes the hardest
problem for INO.

For noise fractions above approximately 50%, the source parameter essimanly slightly
better than random in all settings. On such data, the main influence cometh&amise, while the
contribution of different source combinations is no longer important.

5.2.5 MULTI-ASSIGNMENT CLUSTERING (MAC)

The multi-assignment clustering method yields perfect parameter estimatorsigerlevels up to
40% in all experimental settings considered. The case with 80% of multi-assigmiaiz is the
most challenging one for MAC. When only 50% or 20% of the data items arergtyd by more
than one source, the parameter estimates are accurate for noise leveB59p tw 60% of noisy
bits. When few data items originate from a single source, MAC fails to sepédw@tsontributions
of the individual sources. These single-source data items functioniad afkanchor’ and help the
algorithm to converge to the true parameters of the individual sourcesvelp high noise levels
(90% and above), the performance is again similar for all three ratios of asdigghment data.
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In comparison to the experiments with overlapping sources described iretvieys paragraph,
MAC profits from orthogonal centroids and yields superior parameteuracy for noise levels
above 50%. As for training data with little multi-assignment data, orthogon&iaida simplify the
task of disentangling the contributions of the individual sources. Whemasonable first estimate
of the source parameters can be derived from single-assignmenadata,dimensiord of a data
item is explained either by the unique source which has a high probability of egnattinin this
dimension, or by noise—even if the data item is assigned to more than one.sourc

Interestingly, MAC’s accuracy peaks when the noise is generated bisg-@®R noise process.
The reason is that observing a 1 at a particular bit creates a much highapyeof the parameter
estimate than observing a 0: a 1 can be explained by all possible combindtemgces having a
1 at this position, whereas a 0 gives strong evidence that all sourtes olbject are 0. As a conse-
guence, a wrong bit being 0 is more severe than a wrong 1. The wrargdsfthe source estimates
to a particular value whereas the wrong 1 distributes its ‘confusion’ evemythe sources. As the
noisy-OR creates only 1s, it is less harmful. This effect could, in princgé® help other methods
if they managed to appropriately disentangle combined source parameters.

5.2.6 EERFORMANCE OFMAC VARIANTS

We carry out inference with the MAC model and the corresponding Sidgsignment Clustering
(SAC) model, each with and without the mixture noise model. These model vaaienéxplained

in Section 3.1.1. The results illustrated in Figure 5 are obtained using datatted&@objects. The

objects are sampled from the overlapping sources depicted in Figurél8(@yaluate the solutions
of the SAC variants in a fair way, we compare the estimated sources agagwhhainations of the

true sources.

5.2.7 INFLUENCE OFSIGNAL MODEL AND NOISE MODEL

As observed in Figure 5, the source parameter estimators are much morataaeaen a noise
model is employed. For a low fraction of noisy bits 60%), the estimators with a noise model
are perfect, but are already wrong for 10% noise when not usingsa nodel. When inference is
carried out using a model that lacks the ability to explain individual bits byenti® entire data set
must be explained with the source estimates. Therefore, the solutions tewetfio the data set.
With a noise model, a distinction between the structure and the irregularities iatdésgossible
and allows one to obtain more accurate estimates for the model parameters.

Multi-Assignment Clustering (MAC) provides more accurate estimates thang®@d@he accu-
racy of MAC breaks down at a higher noise level than the accuracAGf $he reason is twofold.
First, the ratio of the number of observations per model parameter diffetmth model variants.
MAC explains the observations with combinations of sources whereas S#i@na each object to
a single source only. SAC therefore uses only those objects for ifetbat are exclusively as-
signed to a source, while MAC also uses objects that are simultaneouslgexbssigother sources.
Second, using the same source in different combinations with other saurpécitly provides a
consistency check for the source parameter estimates. SAC lacks thtsasfidl source parameters
are independent. The difference between MAC and SAC becomeseapparnen the data set is
noisy. For low fractions of noise, the accuracy is the same for both models.
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Figure 5: Average Hamming distance between true and estimated sourdymestfor MAC and
SAC with and without noise models respectively.

We conducted the same experiments on data sets that are ten times largeseamddthe same
effects as the ones described above. The sharp decrease ircgéstaifted to higher noise levels
and appears in a smaller noise window when more data is available.

5.3 Experiments on Role Mining Data

To evaluate the performance of our algorithm on real data, we apply MAgQiriomg RBAC roles
from access control configurations. We first specify the problem sediingthen report on our
experimental results.

5.3.1 ETTING AND TASK DESCRIPTION

As explained in Section 2, role mining must find a suitable RBAC configuratioadbass a binary
user-permission assignment matxix An RBAC configuration is the assignment Kf roles to
permissions and assignments of users to these roles. A user can have muikiplend the bit-
vectors representing the roles can overlap. The inferred RBAC awmafign is encoded by the
Boolean assignment matricés ).

We emphasize the importance of the generalization ability of the RBAC corfigiird he goal
is not primarily to compress the existing user-permission magrbut rather to infer a set of roles
that generalizes well to new users. An RBAC system’s security and mainiéiinabprove when
the roles do not need to be redefined whenever there is a small changeeinténprise, such as a
new user being added to the system or users changing positions withinténprise. Moreover,
as previously explained, it is desirable that the role mining step identifiep#cal permission
assignments. Such exceptional assignments are represented by theongiement of the mixture
model. In practice, one must check whether the suspected erroneoarehigslly errors or if they
were (and still are!) intended. Without additional input, one can at moshgdigssh between reg-
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Figure 6: A 2400« 500 part of the data matrix used for model-order selection. Black dots tedica
a 1 at the corresponding matrix element and white dots indicate a 0. The thulinddrix
has size 4908 1300. Rows and columns of the right matrix are reordered such that user
with the same role set and permissions of the same role are adjacent to eaghifoth
possible. Note that there does not exist a permutation that satisfies thisaofar all
users and permissions simultaneously.

ularities and irregularities. This is a problem for all role mining algorithms: Therfmetation of
the irregularities and any subsequent corrections must be performeeddiyain expert. However,
minimizing the number of suspicious bits and finding a decomposition that gersralél is al-
ready a highly significant advantage over manual role engineeringFiae& et al. (2010) for an
extended discussion of this point.

In our experiments, we use a data set from our collaborator containingstérepermission
assignment matrix o = 4900 users an® = 1300 permissions. We will call this data &g
in subsequent sections. A part of this data matrix is depicted in Figure Gtiéwhlly, we use the
publicly available access control configurations from HP labs publisiiéthle et al. (2008).

To evaluate the different methods on more complex data with a higher noisevievgener-
ate another data s&tas follows: For the original user-permission assignment matri.g§ we
combine the first 500 columns and the second 500 columns by an elemer®Rigperation to
give the structure par®. Afterwards, we replace 33% of the matrix entries by random bits to yield
the modified matrix. This matrix exhibits both a higher structural complexity and a substantially
increased noise level than the original maki¥Ve will call this modified data s€,qg. We explain
the individual steps of the experiments base@gxy as a running example. All other experiments,
those orCnoq and on the HP data, are carried out in the same way.
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Generalization Error on Validation Data runtime
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Figure 7: Left: Generalization error on the hold-out validation set in teringrongly predicted
bits versus the number of roles. The other external parameters for BNOABPS are
determined by exhaustive search. Right: Run-time versus number oforol@2400x
500 access-control matrix. The selected number of roles is highlightedtigatdines.

5.3.2 MODEL-ORDER SELECTION

INO is a non-parametric model that can compute probabilities over the infirdtee g all possible
binary assignment matrices. It is therefore able to select the number sfkalering inference
and needs no external input. For DBPS, BICA, and MAC, the numberle$ must be externally
selected and for DBPS and BICA, also rounding thresholds and appaib&an weights must be
tuned. The number of rold§ is the most critical parameter.

As a principle for guiding these model selection tasks, we employ the gemgi@izrror as
defined in Section 5.1. Out of the total of 4900 users f@ym,, we use five-fold cross-validation
on a subset of 3000 users. In each step, we split them into 2400 wsdraihing the model
parameters and 600 users for validating them, such that each uses oncerin the validation set
and four times in the training set. The number of permissions used in this expeis&00. We
increase the number of roles until the generalization error increases gteen number of roles,
we optimize the remaining parameters (of DBPS and BICA) on the training setisaidation sets.
For continuous parameters, we quantize the parameter search-spae@ égoally spaced values
spanning the entire range of possible parameter values.

To restrict the cardinality of the assignment sets (for MAC), we make oreunavith a large
number of roles and observe how many of the roles are involved in roleinatiuns. A role that is
involved in role combinations is at least once assigned to a user togethet \eiisteone other role.

In our experiments 0fyig, for instance, 10% oK = 100 roles are used in role combinations and
no roles appear in combinations with more than two roles. Therefore, fseguent runs of the
algorithm, we seM = 2 and limit the number of roles that can belong to a multiple assignment set
to 10% ofK. For largeK, such a restriction drastically reduces the run-time as the solution space
is much smaller than the space of all possible role combinations. See Section &vahnalysis of

the run-time complexity of all investigated methods.
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Restricting the number of roles that can belong to a multiple assignment sehaigkg too
few role combinations available to fit the data at hand. However, suchntstemces cannot lead
to underfitting wherK is still to be computed in the cross-validation phase. In the worst case, an
unavailable role combination would be substituted by an extra single role.

The performance of the three methods MAC, DBPS, and BICA as a funatitre number of
roles is depicted in Figure 7(a), left. The different models favor a sobatly different number
of roles on this data set (and also on other data sets, see Table 1). Edrthike is a very clear
indication of overfitting forK > 248. For DBPS, the generalization error monotonically decreases
for K < 150. AsK further increases, the error remains constant. In the cross-validdtase pthe
internal threshold parameter of DPBS is adapted to minimize the generalizabonTdris prevents
excessive roles from being used as, with the optimal threshold, they famrpty. We select
K = 200 for DBPS, where more roles provide no improvement. INO selects|&8 om average.
BICA favors a considerably smaller number of roles, even though thealsigmot as clear. We
selectK = 95 for BICA, which is the value that minimizes the median generalization erréhen
validation sets.

5.3.3 RESULTS OFDIFFERENTMETHODS

The results of the generalization experiments for the four methods MAC SDBRCA, and INO
are depicted in Figure 8. Overall, all methods have a very low generalizationon the original
data set. The error spans from 1% to 3% of the predicted bits. This redigihias that, on a global
scale Corig has a rather clean structure. It should be stressed that most permisdioagput data
set are only rarely assigned to users, whereas some are assignedsioeaiangone, thereby making
up most of the 1s in the matrix (see a part of the data set in Figure 6). Dherdfie most trivial
role set where roles are assigned no permissions already yields algetiem error of 13.5%.
Assigning everyone to a single role that contains all permissions that moré®8a percent of the
users have, achieves 7.1%. One should keep this baseline in mind whenatitey the results.

INO, DBPS, and BICA span a range fron2% generalization error to approximately 3% with
significant distance to each other. MAC achieves the lowest generalizatimmwith slightly more
than 1%. It appears that INO is misled by its noisy-OR noise model, which gedrasnappropriate
in this case. MAC estimates the fraction of noisy bitséby 2.8% and the probability for a noisy
bit to be 1 byr"~ 20%. This estimate clearly differs from a noisy-OR noise process (whathdv
haver = 1). With more than 3% generalization error, BICA performs worst. As akothethods
estimate a considerable centroid overlap, the assumption of orthogonabyedapping) centroids
made by BICA seems to be inappropriate here and might be responsible fugtier error.

In our experiments on the modified data set with more structure and a higiserleeel, Fig-
ure 8(b), all methods have significantly higher generalization errongingabetween approximately
10% to 21%. The trivial solution of providing each user all those permissisaigned to more than
50% of the users, leads to an error of 23.3%. Again, MAC with 10% gémnatian error yields
significantly lower generalization error than all the other methods. INO,®BRd BICA perform
almost equally well each with a median error of 20% to 21%. A generalization @i 10% is still
very good as this data set contains at least 33% random bits, even thoaigtiom bit can take the
correct value by chance.

The lower row of Figure 8 shows the average role overlap between kb abtained by the
different methods. This overlap measures the average number of permigsat the inferred roles
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Figure 8: Generalization experiment on real data. Graphs (a)-(dy #® generalization error
obtained with the inferred roles, and graphs (e)-(f) display the agevagrlap between

roles.

have in common. For BICA, the roles never overlap, by the definition of thénade For all
other methods, the increased overlap of the data’s structure is refledtedlestimated roles. The
decrease in the difference in performance between BICA and the otltsisrafter processing the
modified data set indicates that the main difficulty for models that can repregettapping roles
is the increased noise level rather than the overlapping structure. Westwuilhrto the influence of
the data set in our discussion of the results of the MAC model variants in fhseetion.
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5.3.4 ResuLTS OFMAC MODEL VARIANTS

To investigate the influence of the various model variants of MAC, we coeniber performance
reported above for MAC with i) the results obtained by the single-assignotestiering variant
(SAC) of the model and ii) with the model variants without a noise part. The middief Figure 8
shows the generalization error of SAC and MAC, both with and without aenmisdel. On the
original data set, Figure 8(c), all model variants perform almost equadl virhe noise model
seems to have little or no impact, whereas the multi-assignments slightly influen@mtrakzation
error. Taking MAC's estimated fraction of noisy b&ss 2.8% into account, we interpret this result
by referring to the experiments with synthetic data. There the particular nvadi@int has no
influence on the parameter accuracy when the noise level is below 5%i(gee 5.2.7). As we
seem to operate with such low noise levels here, it is not surprising that ttlel mariants do
not exhibit a large difference on that data set. On the modified data with roorplex structure
and with a higher noise level than the original data (Figure 8(d)), thereiftee between multi-
assignments and single-assignments becomes more apparent. Both MAGGuhe&:fit from a
noise part in the model, but the multi-assignments have a higher influence.

5.3.5 RESULTS ONHP DATA

With all methods described above, we learn RBAC configurations on thiclyuavailable data
sets from HP labs (first presented by Ene et al., 2008). The datausédreer’ is the access control
matrix of an HP customer. ‘americas small’ is the configuration of Cisco firewldis provide
users limited access to HP network resources. The data set ‘emea’tedcirea similar way and
‘firewall 1’ and ‘firewall 2’ are created by Ene et al. (2008) by arahtg Checkpoint firewalls.
Finally, ‘domino’ is the access profiles of a Lotus Domino server.

We run the same analysis as@ig. For the data sets ‘customer’, ‘americas small’, and ‘firewalll
1’, we first make a trial run with many roles to identify the maximum cardinality efgasnent sets
M that MAC uses. We then restrict the hypothesis space of the model auglgrd-or ‘customer’
and ‘firewall 1’, we useM = 3, for ‘americas small’ we uskl = 2. For the smaller data sets, we
simply offered MAC all possible role configurations, although the modes aae populate all of
them.

In the cross-validation phase we select the number of roles for eacte ohéithods (except
for INO), and the thresholds for BICA and DBPS in the previously dbecrway. Afterwards we
compute the generalization error on hold-out test data.

Our experimental findings are summarized in Table 1. We report the fhvonaber of roles,
the median generalization error and its average difference to the 25%b&0gé&rcentiles, and the
run-time of one run, respectively. Overall, the MAC variants achieve tlwedbgeneralization error
within the variance of this measure. For ‘americas small’ and ‘emea’ all metietralize equally
well (note the high variance for ‘emea’, which is an effect of the small darsige and the high
dimensionality of that data set). Here differences between the methodsrameated by run-time
and the number of roles that have been found. For ‘dominos’, INO a@& Bre almost as good
as MAC, although with a significantly higher variance. Visual inspection efdominos’ matrix
indicates that this data set has a sparse and simple structure. Diffelmteesn the methods
are most pronounced on the two ‘firewall’ data sets. Remarkably, ING ®#@droles for ‘emea’,
although this data set has only 35 users.
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Given the overall good generalization performance of MAC, we comctbdt this model is a
good ‘allrounder’. This also confirms our findings in the experiments wittirmtic data. Each of
the other methods shows a good performance on individual data setetlag reliably as MAC.
Comparison with the results on synthetic data suggests that their differifayrpance on different
data sets is either due to different fractions of random noise or to truerlyim) sources with
different overlap.

customer americas small
10,021 userx 277 perms. 3,477 users< 1,587 perms.
k | gen. error [%]| run-time [min] k | gen. error [%]| run-time [min]
MAC | 187 | 2.40+0.03 49 139 | 1.03+0.01 80
DBPS| 178 | 2.54+0.05 43 105 | 1.00+£0.03 187
INO 20 78+16 996 65.6| 1.05+0.01 3691
BICA | 82 2.66+0.02 200 63 1.00+0.01 64
firewalll firewall2
365 usersx 709 perms. 325 usersx 590 perms.
k | gen. error [%]| run-time [min] k | gen. error [%]| run-time [min]
MAC 49 4.57+0.01 10 10 3.40+0.00 1.8
DBPS| 21 136+3.1 5 4 195+44 2
INO 38.2| 8.04+0.00 96 6.2 | 11.15+0.00 14
BICA | 18 128+3.0 21 4 199445 0.9
dominos emea
79 usersx 231 perms. 35 usersx 3,046 perms.
k | gen. error [%]| run-time [min] || k | gen. error [%]| run-time [min]
MAC 7 1.73+0.00 1.1 3 87+12 0.7
DBPS| 9 2.3+05 0.2 8 7.3+26 1.1
INO 26 17+£0.1 9.0 80.4| 101+24 204
BICA 3 19+03 0.1 5 8.6+28 1.0

Table 1: Results on HP labs data for different methods. We report thearwhtoles, the median
run-time of one run, as well as the median generalization error and the testpiercentile
distance between 25% and 75%.

5.4 Complexity and Runtime

The complexity of the optimization problem is determined by the number of objedtéeatures
and by the number of possible assignment kets |L|. AsL can be large for even a small number
of clusters, the complexity is dominated by that number. Let the number of dubiat a data
item can simultaneously belong to be limited by tfegree M i.e. max.cy |£] = M. Then the
size of the assignment set is limited by= Zmzo (r*;) < 2. Even for moderately sizeld andM,
this dependence results in computationally demanding optimization problems btith foference
step as well as for assigning new data items to previously obtained clustensever, if the data
at hand truly exhibits such a high complexity (highandM) then also a single assignment model
needs such a high complexity (to prevent the model from underfitting).igrcése, a SAC model
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must learrL sources, while the MAC variant learns thgossible combinations out &f sources.
The number of responsibilities, (Equation 8) to be computed in the E-step is the same for both
models. However, in the M-step, MAC shares the source parameters v@len8st estimate them
separately. We will shortly elaborate on the relationship between MAC a@ifn the inference
perspective. Coming back to the complexity, the high number of responsibyjitiés be computed

for MAC appears to be a model-order selection issue. One can drastedillge its complexity by
limiting the number of assignment sets as described in Section 5.3.2.

In our experiments on real-world data in Section 5.3, we monitored the run-tilmieh is
depicted in Figure 7(b). Each point represents the runtime for a singte tha different algorithms
on an access-control matrix with = 2400 users an® = 500 permissions. The number of roles
chosen by the respective method is indicated by a vertical line. For INCep@rtrthe median
number of roles selected. Note that in one run of INO, the model-ordenteleask is solved ‘on-
the-fly’ while the other methods require multiple runs and an external validafibis overhead is
reflected in the runtime. Considerable care is required in interpreting thasiésrsince the different
methods were implemented by different authors in different languagetafdfar INO, BICA and
MAC, and C++ for DBPS). The DBPS implementation in C++ is impressivelyvidule the trend
of the generalization error over the number of roles is roughly compatai#AC and BICA.
Thus, for large and demanding data sets, one could employ DBPS as'sctadt to obtain an
educated guess of the model-order. In conclusion, for all the investigigerithms the runtime is
not a limiting factor in role mining. This computation is only performed once whenatiigr an
access-control system to another one. It is therefore not a probtemébmputation takes hours.

5.5 Relationship Between SAC and MAC

In the following, we show that MAC can be interpreted as a SAC model withranpeter sharing
rule. In the limit of many observations, MAC is equivalent to SAC with proggses substituting
MAC'’s source combinations. In order to understand the parameter ghamaterlying MAC, we
write the set of admissible assignment detas a Boolean matriz- ¢ {0,1}-X. Assuming an
arbitrary but fixed numbering of assignment setd jrg}, = 1 means that th&h assignment set
contains sourcé, andz, = 0 otherwise. Hence, the assignment magridecomposes inta =

z- x Z4, wherez” € {0,1}N*L denotes the exclusive assignment of objects to assignmentzgets (
iff object i has assignment setandy, zf = 1 for all i). Using this notation, the decomposition
X & Zx U can be extended to

X~ (28 %25 xu=2"x (2" xu) = 2- % uSAC,

where we have definadPA® := z& «u as the proxy-source parameters of the single-assignment clus-
tering model. The same notion of proxy-sources, substituting the disjundtindi@idual sources,

is used in Equation 2 for the probabilistic source parameters. Asymptoticalywthmodels are
equivalent. However, SAC must estimateéD parameters, while the MAC model only ugesD pa-
rameters. By sharing the parameters of the assignment sets, MAC réldeicesnber of parameters

to be estimated and thereby increases the number of data items availablegpestear Moreover,

the sharing rule provides a mutual inconsistency check for the involvedneter estimates. This
check is not available if parameters are estimated independently. Theseitwgxplain the higher
accuracy in the parameter estimators, which we observe in the experimgmtiedein Section 5.2.
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6. Conclusion and Outlook

We have presented a probabilistic method to cluster vectors of Boolean ldatantrast to the
conventional approach of mutually exclusive cluster assignments, oundhetfables a data item
to belong to multiple clusters. In our generative model, the clusters are theesahat generate
the structure in the data and irregularities are explained by an indepemaiset process. In a
detailed analysis of our model variants, we demonstrate that the proposkeddrmtperforms
state-of-the-art techniques with respect to parameter estimation acemgggneralization ability.
In experiments on a real world data set from the domain of role-basesdscontrol, our model
achieves significantly lower generalization error than state-of-the dmigues.

Throughout this paper, the Boole®R combines the emissions of multiple sources. However,
the proposed concept is neither limited to the Bool€Rinor to Boolean data. Further work
will address the combination of other kinds of data and other combination sutdsas additive
combinations of real numbers.

Acknowledgments

This work was partially supported by the Zurich Information Security Cearterby the CTI grant
Nr. 8539.2;2 EPSS-ES. We thank the reviewers for their valuable comments.

References

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for miniragiatsn rules. In
Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, edit®rs¢. 20th Int. Conf. Very Large
Data Bases, VLDBpages 487-499. Morgan Kaufmann, 1994.

Rakesh Agrawal, Tomasz Imiékki, and Arun Swami. Mining association rules between sets of
items in large databasemt Conf on Management of Datda2(2):207-216, 1993.

Eugene L. Allgower and Kurt Georg. Simplicial and continuation methodsfmroximations,
fixed points and solutions to systems of equati@®®\M Review22:28-85, 1980.

Charles E. Antoniak. Mixtures of Dirichlet processes with applications tgeBan nonparametric
problems.The Annals of Statistic(6):1152-1174, November 1974.

Radim Belohlavek and Vilem Vychodil. Discovery of optimal factors in bindaga via a novel
method of matrix decompositiod. Comput. Syst. S¢ir6(1):3-20, 2010.

Joachim M. Buhmann and Hans Kiihnel. Vector quantization with complexitg.citdEEE Trans
on Information Theoryvolume 39, pages 1133-1145. IEEE, 1993.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and @lifeein. Introduction to
Algorithms, 2nd edMIT Press, 2001.

Alina Ene, William Horne, Nikola Milosavljevic, Prasad Rao, Robert Scleeiland Robert E.
Tarjan. Fast exact and heuristic methods for role minimization problemsSARMAT '08:
Proceeding of the 13th ACM Symposium on Access Control Models @hddlegies pages
1-10, 2008.

487



FRANK, STREICH, BASIN AND BUHMANN

Thomas S. Ferguson. A Bayesian analysis of some nonparametric proBlenas of Statistigsl
(2):209-230, 1973.

David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kulmd, Ramaswamy Chan-
dramouli. Proposed NIST standard for role-based access coACH. Trans. Inf. Syst. Secud
(3):224-274, 2001.

Mario Frank, David Basin, and Joachim M. Buhmann. A class of probébilisodels for role
engineering. INCCS '08: Proceedings of the 15th ACM Conference on Computer anar@em
nications Securitypages 299-310, New York, NY, USA, 2008. ACM.

Mario Frank, Joachim M. Buhmann, and David Basin. On the definitionlefrmining. INSACMAT
"10: Proceeding of the 15th ACM Symposium on Access Control ModdI$echnologiepages
35-44, New York, NY, USA, 2010. ACM.

Mario Frank, Morteza Chehreghani, and Joachim M. Buhmann. The minitraursfer cost princi-
ple for model-order selection. BCML PKDD ’11: Machine Learning and Knowledge Discov-
ery in Databasespages 423-438. Springer Berlin / Heidelberg, 2011.

Bernhard Ganter and Rudolf Wille. Formal Concept Analysis - Mathematical Foundations
Springer, 1999.

Zoubin Ghahramani, Thomas L. Griffiths, and Peter Sollich. Bayesianananpetric latent feature
models.Bayesian Statistics 8. Oxford University Pregages 201-225, 2007.

James F. Gimpel. The minimization of spatially-multiplexed character €etsimunications of the
ACM, 17(6):315-318, 1974.

Thomas L. Griffiths and Zoubin Ghahramani. The indian buffet procéssintroduction and
review. Journal of Machine Learning Researct?:1185-1224, 2011.

Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns withoutlickaie generation. In
SIGMOD '00: Proceedings of the 2000 ACM SIGMOD International Cearfee on Management
of Data pages 1-12, New York, NY, USA, 2000. ACM.

Katherine A. Heller and Zoubin Ghahramani. A nonparametric bayesiaroagip to modeling
overlapping clusters. IBleventh International Conference on Artificial Intelligence and Statistics
(AISTATS-2007)pages 297-304, 2007.

Tommi S. Jaakkola and Michael I. Jordan. Variational probabilistic imezeand the gmr-dt net-
work. Journal of Artificial Intelligence Research0(1):291-322, 1999.

Ata Kabén and Ella Bingham. Factorisation and denoising of 0-1 data: Atieendh approach.
Neurocomputing71(10-12):2291-2308, 2008.

Charles Kemp, Joshua B. Tenenbaum, Thomas L. Griffths, Takeshidénaad Naonori Ueda.
Learning systems of concepts with an infinite relational modeNadhConf on Artificial Intelli-
gence pages 763—770, 2006.

Ales Keprt and Vaclav Snasel. Binary factor analysis with help of formatepts. IrProc. of CLA
2004 pages 90-101, 2004.

488



MULTI-ASSIGNMENTCLUSTERING FORBOOLEAN DATA

Martin Kuhlmann, Dalia Shohat, and Gerhard Schimpf. Role mining — revealisgbéss roles
for security administration using data mining technologySIRCMAT’03: Proceeding of the 8th
ACM Symp on Access Control Models and Technologiages 179-186, New York, NY, USA,
2003. ACM.

Harold W. Kuhn. The hungarian method for the assignment problerd0 Iviears of Integer Pro-
gramming 1958-20Q0%ages 29-47. Springer Berlin Heidelberg, 2010.

Pauli Miettinen, Taneli Mielikainen, Aris Gionis, Gautam Das, and Heikki RlEn The Discrete
Basis Problem. IfProc. of Principles and Practice of Knowledge Discovery in Databgsages
335-346. Springer, 2006.

lan Molloy, Hong Chen, Tiancheng Li, Qihua Wang, Ninghui Li, Elisa BertiBeraphin Calo, and
Jorge Lobo. Mining roles with semantic meanings. SACMAT '08: Proceeding of the 13th
ACM Symposium on Access Control Models and Technolquages 21-30, 2008.

Judea PearProbabilistic Reasoning in Intelligent Systems: Networks of Plausible iméeré/or-
gan Kaufmann, September 1988.

Kenneth Rose. Deterministic annealing for clustering, compression, atasisifi, regression, and
related optimization problems. Proc. of the IEEEpages 2210-2239, 1998.

Larry J. Stockmeyer. The set basis problem is NP-compReport RC5431, IBM Watson Research
1975.

Andreas P. Streich, Mario Frank, David Basin, and Joachim M. Buhmiglufti-assignment clus-
tering for Boolean data. ICML '09: Proceedings of the 26th Annual International Conference
on Machine Learningpages 969-976, New York, NY, USA, 2009. ACM.

Jaideep Vaidya, Vijay Atluri, and Qi Guo. The Role Mining Problem: Finding améhdescriptive
set of roles. IIBACMAT '07: Proceeding of the 12th ACM Symposium on Access Cbtua#ls
and Technologiegpages 175-184. ACM Press, 2007.

Tomas Singliar and Milo3 Hauskrecht. Noisy-or component analysis angygation to link
analysis.Journal of Machine Learning Researchi2189-2213, 2006.

Frank Wood, Thomas L. Griffiths, and Zoubin Ghahramani. A non-patr@oigayesian method for
inferring hidden causes. I@onference on Uncertainty in Artificial Intelligencggages 536-543.
AUAI Press, 2006.

489



