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Abstract
We propose a probabilistic model for clustering Boolean data where an object can be simultane-
ously assigned to multiple clusters. By explicitly modeling the underlying generative process that
combines the individual source emissions, highly structured data are expressed with substantially
fewer clusters compared to single-assignment clustering.As a consequence, such a model provides
robust parameter estimators even when the number of samplesis low. We extend the model with
different noise processes and demonstrate that maximum-likelihood estimation with multiple as-
signments consistently infers source parameters more accurately than single-assignment clustering.
Our model is primarily motivated by the task of role mining for role-based access control, where
users of a system are assigned one or more roles. In experiments with real-world access-control
data, our model exhibits better generalization performance than state-of-the-art approaches.

Keywords: clustering, multi-assignments, overlapping clusters, Boolean data, role mining, latent
feature models

1. Introduction

Clustering defines the unsupervised learning task of grouping a set of data items into subsets such
that items in the same group are similar. While clustering data into disjoint clusters is conceptually
simple, the exclusive assignment of data to clusters is often overly restrictive, especially when data
is structured. In this work, we advocate a notion of clustering that is not limitedto partitioning
the data set. More generally, we examine the task of inferring the hidden structure responsible for
generating the data. Specifically, multiple clusters can simultaneously generatea data item using
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a problem dependent link function. By adopting a generative viewpoint, such data originate from
multiple sources.

Consider, for instance, individuals’ movie preferences. A person might belong to the “comedy”
cluster or the “classics” cluster, where each cluster membership generates a preference for the re-
spective genre of movies. However, some people like both comedy movies and classics. In standard
single-assignment clustering, a third “comedy&classics” cluster would be created for them. Under
the generative viewpoint, we may assign individuals simultaneously to both of the original clus-
ters to explain their preferences. Note that this differs from “fuzzy” clustering, where objects are
partially assigned to clusters such that these fractional assignments (also called “mixed member-
ship”) add up to 1. In our approach, an object can be assigned to multiple clustersat the same time,
that is, the assignments of an object can sum to a number larger than 1. Membership in a second
cluster does not decrease the intensity of the membership in the first cluster.We call this approach
multi-assignment clustering(MAC).

In a generative model that supports multi-assignments, one must specify how a combination of
sources generates an object. In this paper, we investigate clustering forBoolean data. The combined
emissions from individual sources generate an object by the Boolean ORoperation. In the example
of the movie preferences, this means that an individual belonging to both thecomedy and the classics
cluster likes a comedy film like “Ghostbusters” as much as someone from the comedy cluster, and
likes the classic movie “Casablanca” as much as someone who only belongs to the classics group.

In this paper, we develop a probabilistic model for structured Boolean data. We examine var-
ious application-specific noise processes that account for the irregularities in the data and we the-
oretically investigate the relationships among these variants. Our experiments show that multi-
assignment clustering computes more precise parameter estimates than state-of-the art clustering
approaches. As a real-world application, our model defines a novel and highly competitive solu-
tion to therole miningproblem. This task requires to infer a user-role assignment matrix and a
role-permission assignment matrix from a Boolean user-permission assignment relation defining an
access-control system. The generalization ability of our model in this domain outperforms other
multi-assignment techniques.

The remainder of this paper is organized as follows. In the next section, we survey the literature
on Boolean matrix factorization and the clustering of Boolean data. In Section3, we derive our
generative model and its variants and describe parameter inference in Section 4. In Section 5, we
present experiments on synthetic and real-world data generated from multiple sources.

2. Related Work

In this section, we provide an overview of existing methods for the exploratory analysis of Boolean
data. The described approaches have been developed within different research areas and have dif-
ferent objectives. However, they all aim to produce a structured representation of given binary data.
The research areas include association-rule mining, formal concept analysis, clustering, dimension
reduction, latent feature models, and database tiling. We distinguish betweenmethods that search
for an exact representation of the data and methods that approximate the representation. In the fol-
lowing, we review several related problem formulations and compare the approaches used to solve
them.
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2.1 Problem Formulations

There are different problem formulations that arise in the context of Boolean matrix factorization.
In this section, we explain the most characteristic ones and relate them to eachother.

2.1.1 EXACT BOOLEAN MATRIX DECOMPOSITION ANDEQUIVALENT PROBLEMS

These methods aim at an exact Boolean factorization of the input matrix. Theearliest formulation
of such problems is presumably the set-cover problem (also called set basis problem) presented by
Gimpel (1974) and Cormen et al. (2001).

Definition 1 (Set-Cover Problem) Given a set of finite setsx = {x1,x2, ...,xN}, find a basisu =
{u1,u2, ...,uK} with minimal cardinality K such that eachxi can be represented as a union of a
subset ofu.

All sets inx have a vector representation in aD-dimensional Boolean space, where a 1 at dimen-
sion d indicates the membership of itemd in the respective set.D is the cardinality of the union
of x1,x2, ...,xN. The matrixz ∈ {0,1}N×K then indicates which subsets ofu cover the sets inx:
zik = 1 indicates thatuk coversxi . Using this notation, the set-covering problem is equivalent to
finding an exact Boolean decomposition of a binary matrixx with minimal K. An exact Boolean
decomposition isx = z∗u, where the Boolean matrix product∗ is defined such that

xid =
K∨

k=1

(zik∧ukd) . (1)

Belohlavek and Vychodil (2010) show that the set cover problem is equivalent to Boolean factor
analysis, where each factor corresponds to a row ofu. Keprt and Snásel (2004) show that the
factors together with the objects assigned to them can, in turn, be regardedas formal concepts as
defined in the field of Formal Concept Analysis (FCA) by Ganter and Wille (1999). Stockmeyer
(1975) shows that the set-cover problem is NP-hard and the corresponding decision problem is
NP-complete. Since the set-cover problem is equivalent to the other problems, this also holds for
Boolean factor analysis, finding the exact Boolean decomposition of a binary matrix, and FCA.
Approximation heuristics exist and are presented below.

2.1.2 APPROXIMATE BOOLEAN MATRIX DECOMPOSITION

An approximate decomposition of a matrixx is often more useful than an exact one. One can dis-
tinguish two problems, which we refer to as the lossy compression problem (LCP) and the structure
inference problem (SIP). For LCP, two different formulations exist. Inthe first formulation of Miet-
tinen et al. (2006), the size of the matrixu is fixed and the reconstruction error is to be minimized.

Definition 2 (LCP1: Minimal Deviation for given K) For a given binary N×D matrix x and a
given number K< min(N,D), find an N×K matrixz and a K×D matrixu such that the deviation
||x−z∗u|| is minimal.

Alternatively, the deviation is given, as in Vaidya et al. (2007), and the minimal z andu must be
found to approximatex.

Definition 3 (LCP2: Minimal K for Given Deviation) For a given binary N×D matrix x and a
given deviationδ, find the smallest number K< min(N,D), a N×K matrix z, and a K×D matrix
u such that||x−z∗u|| ≤ δ.
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Figure 1: Dimensions of input data and output of the problems defined in Definitions 1–4.

The norm in both formulations of LCP is usually the Hamming distance. Both problems are NP-hard
as shown by Vaidya et al. (2007).

In the structure inference problem (SIP), the matrixx is assumed to be generated from a structure
part (z∗,u∗) and a random noise part. The goal is to find the decomposition (z∗,u∗) that recovers the
structure and disregards the noise.

Definition 4 (SIP) Let the binary N×D matrix x be given. Assuming thatx was generated from a
hidden structure(z∗,u∗) and perturbed by noiseΘ such thatx∼ p(x|Θ,z∗∗u∗), infer the underlying
structure(z∗,u∗).

There is a substantial difference between SIP and the two lossy compression problems LCP1 and
LCP2. Assuming that some of the entries are corrupted, neither the closestapproximation of the
original matrix nor the best compression is desirable. Instead, the goal is toinfer a structure under-
lying the data at hand rather than to decompose the matrix with the highest possible accuracy. Since
the structure of the data is repeated across the samples, whereas its noise isirregular, better structure
recovery will also provide better prediction of new samples or missing observations.

2.2 Approaches

Depending on the problem formulation, there are several ways how the factorization problems are
approached. In this section we provide an overview over related methods.

2.2.1 COMBINATORIAL APPROACHES

The problems LCP1 and LCP2 are NP-hard. Heuristic methods to find approximate solutions usu-
ally construct candidate sets for the rows of the matrixu, and then greedily pick candidates such
that, in each step, the reconstruction error is minimal. For the set covering problem defined in Cor-
men et al. (2001), the candidate set is the set of all possible formal concepts. For the approximate
decomposition problem described in Miettinen et al. (2006), candidates arecomputed using asso-
ciation rule mining as presented in Agrawal et al. (1993). A predefined number of candidates is
then iteratively chosen and assigned to the objects such that, in each step, the data set is optimally
approximated. We will refer to this algorithm, originally presented in Miettinen et al. (2006), as the
Discrete Basis Problem Solver (DBPS) and use Miettinen’s implementation of DBPS in some of our
experiments. In the greedy algorithm proposed in Belohlavek and Vychodil (2010), the construction
of a large candidate set is avoided by iteratively constructing the next best candidate.
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2.2.2 MODEL-BASED APPROACHES

Solutions to the structure inference problem as presented in Wood et al. (2006),
Šingliar and Hauskrecht (2006), Kabán and Bingham (2008), and Streich et al. (2009) are often
based on probabilistic models. The likelihood that is most similar to the one we propose is the
noisy-OR gate introduced in Pearl (1988). Our model allows random flipsin bothdirections. The
noisy-OR model, which is constrained to random bit flips from zeros to ones, is thus a special case of
the noise model that we present in Section 3.2.4. A detailed comparison of the relationship between
the noisy-OR model and our approach follows in Section 3.

There are two models that use a noisy-OR likelihood. Noisy-OR component analysis (NOCA),
as in Šingliar and Hauskrecht (2006), is based on a variational inference algorithm by Jaakkola and
Jordan (1999). This algorithm computes the global probabilitiesp(u j = 1), but does not return a
complete decomposition. A non-parametric model based on the Indian-Buffet process (Griffiths
and Ghahramani, 2011) and a noisy-OR likelihood is presented in Wood et al. (2006). We call this
approach infinite noisy-OR (INO). Our method differs from INO with respect to the data likelihood
and with respect to optimization. While our model yields an exact solution to an approximate model,
replacing the binary assignments by probabilistic assignments, the inferenceprocedure for INO aims
at solving the exact model by sampling. INO is a latent feature model, as described by Ghahramani
et al. (2007), with Boolean features. Latent feature models explain data by combinations of multiple
features that are indicated as active (or inactive) in a binary matrixz. Being a member in multiple
clusters (encoded inz) is technically equivalent to having multiple features activated.

Binary independent component analysis (BICA) of Kabán and Bingham(2008) is a factor model
for binary data. The combination of the binary factors is modeled with linear weights and thus
deviates from the goal of finding binary decompositions as we defined it above. However, the
method can be adapted to solve binary decomposition problems and performs well under certain
conditions as we will demonstrate in Section 5.2.

Two other model-based approaches for clustering binary data are also related to our model, al-
though more distantly. Kemp et al. (2006) presented a biclustering method that infers concepts in
a probabilistic fashion. Each object and each feature is assigned to a single bicluster. A Dirichlet
process prior (Antoniak, 1974; Ferguson, 1973) and a Beta-Bernoulli likelihood model the assign-
ments of the objects. Heller and Ghahramani (2007) presented a Bayesiannon-parametric mixture
model including multiple assignments of objects to binary or real-valued centroids. When an object
belongs to multiple clusters, the product over the probability distributions of allindividual mixtures
is considered, which corresponds to the conjunction of the mixtures. This constitutes a probabilistic
model of the Boolean AND, whereas in all the above methods mentioned, as well as in our model,
the data generation process uses the OR operation to combine mixture components.

In this paper, we provide a detailed derivation and an in-depth analysis ofthe model that we
proposed in Streich et al. (2009). We thereby extend the noise part of the model to several variants
and unify them in a general form. Moreover, we provide an approach for the model-order selection
problem.

2.3 Applications

There are numerous applications for Boolean matrix factorization. In this paper we will focus on one
specific application, the role mining problem, which was first formulated by Kuhlmann et al. (2003).
This problem can be approached as a multi-assignment clustering problem since in role mining the
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associated data sets are clearly generated by multiple sources. Our model was motivated by this
security-relevant problem. In the following, we will describe this problem and give representative
examples of the main role mining methods that have been developed.

2.3.1 ROLE M INING AND RBAC

The goal of role mining is to automatically decompose a binary user-permission assignment matrix
x into a role-based access control (RBAC) configuration consisting of a binary user-role assignment
matrix z and a binary role-permission assignment matrixu. RBAC, as defined in Ferraiolo et al.
(2001), is a widely used technique for administrating access-control systems where users access
sensitive resources. Instead of directly assigning permissions to users, users are assigned to one
or more roles (represented by the matrixz) and obtain the permissions contained in these roles
(represented byu).

The major advantages of RBAC over a direct user-permission assignment(encoded in the ma-
trix x) are ease of maintenance and increased security. RBAC simplifies maintenance for two rea-
sons. First, roles can be associated with business roles, i.e. tasks in an enterprise. This business
perspective on the user is more intuitive for humans than directly assigning individual low-level
permissions. Second, assigning users to just a few roles is easier than assigning them to hundreds
of individual permissions. RBAC increases security over access-control on a user-permission level
because it simplifies the implementation and the audit of security policies. Also, it isless likely
that an administrator wrongly assigns a permission to a user. RBAC is currently the access control
solution of choice for many mid-size and large-scale enterprises.

2.3.2 STRUCTURE AND EXCEPTIONS INACCESSCONTROL MATRICES

The regularities of an access control matrixx, such as permissions that are assigned together to many
users, constitute the structure ofx. Exceptional user-permission assignments are not replicated over
the users and thus do not contribute to the structure. There are three reasons for the existence of
such exceptional assignments. First, exceptional assignments are often granted for ‘special’ tasks,
for example if an employee temporarily substitutes for a colleague. Such exceptions may initially be
well-motivated, but often the administrator forgets to remove them when the user no longer carries
out the exceptional task. The second reason for exceptional assignments is simply administrative
mistakes. Errors may happen when a new employee enters the company, or permissions might not
be correctly updated when an employee changes position within the company.Finally, exceptional
assignments can be intentionally granted to employees carrying out highly specialized tasks.

The role mining step should ideally migrate the regularities of the assignment matrixx to RBAC,
while filtering out the remaining exceptional permission assignments. We model exceptional as-
signments (all three cases) with a noise model described in Section 3.2. We are not aware of any
way to distinguish these three cases when only user-permission assignmentsare given as an input.
However, being able to separate exceptional assignments from the structure in the data substantially
eases the manual search for errors.

2.3.3 PRIOR ART

There is no consensus in the literature on the objective of role mining. An overview of all existing
problem definitions is provided in Frank et al. (2010). We consider role mining as an inference
problem, which we defined in Definition 4. Numerous algorithms for role mining exist. Molloy et al.
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(2008) apply an algorithm from formal concept analysis (see Ganter and Wille, 1999) to construct
candidate roles (rows inu). The technique presented in Vaidya et al. (2007) uses an improved
version of the database tiling algorithm from Han et al. (2000). In contrast to the method presented
in Agrawal and Srikant (1994), their tiling algorithm avoids the constructionof all concepts by using
an oracle for the next best concept. A method based on a probabilistic model is proposed in Frank
et al. (2008). The model is derived from the logical representation of aBoolean two-level hierarchy
and is divided into several subcases. For one of the cases with only single assignments of objects,
the bi-clustering method presented in Kemp et al. (2006) is used for inference.

3. Generative Model for Boolean Data from Multiple Sources

In this section we explain our model of the generation process of binary data, where data may
be generated by multiple clusters. The observed data stems from an underlying structure that is
perturbed by noise. We will first present our model for the structure and afterwards provide a
unifying view on several noise processes presented in the literature.

We use a probabilistic model that describes the generative process. Thishas two advantages over
discrete optimization approaches. First, considering a separate noise process for the irregularities
of the data yields an interpretation for deviations between the input matrixx and its decomposi-
tion (z,u). Second, the probabilistic representation of the sourcesu is a relaxation of the original
computationally hard problem, as explained in the previous sections.

Let the observed data consist ofN objects, each associated withD binary dimensions. More
formally, we denote the data matrix byx, with x ∈ {0,1}N×D. We denote theith row of the matrix
by xi∗, and thedth column byx∗d. We use this notation for all matrices.

3.1 Structure Model

The systematic regularities of the observed data are captured by its structure. More specifically,
the sources associated with the clusters generate the structurexS∈ {0,1}N×D. The association of
data items to sources is encoded in the binary assignment matrixz∈ {0,1}N×K , with zik = 1 if and
only if the data itemi belongs to the sourcek, andzik = 0 otherwise. The sum of the assignment
variables for the data itemi, ∑k zik, can be larger than 1, which denotes that a data itemi is assigned
to multiple clusters. This multiplicity gives rise to the namemulti-assignment clustering(MAC).
The sources are encoded as rows ofu ∈ {0,1}N×K .

Let the set of the sources of an object beLi := {k∈ {1, . . . ,K}|zik = 1}. LetL be the set of all
possibleassignment setsandL ∈ L be one such an assignment set. The value ofxS

id is a Boolean
disjunction of the values at dimensiond of all sources to which objecti is assigned. The Boolean
disjunction in the generation process of anxS

id results in a probability forxS
id = 1, which is strictly

non-decreasing in the number of associated sources|Li |: If any of the sources inLi emits a 1 in
dimensiond, thenxS

id = 1. Conversely,xS
id = 0 requires that all contributing sources have emitted a

0 in dimensiond.
Let βkd be the probability that sourcek emits a 0 at dimensiond: βkd := p(ukd = 0). This

parameter matrixβ ∈ [0,1]K×D allows us to simplify notation and to write

pS
(

xS
id = 0 |zi∗,β

)

=
K

∏
k=1

βzik
kd andpS

(

xS
id = 1 |zi∗,β

)

= 1− pS
(

xS
id = 0 |zi∗,β

)

.
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The parameter matrixβ encodes these probabilities for all sources and dimensions. Employing the
notion of assignment sets, one can interpret the product

βLid :=
K

∏
k=1

βzik
kd (2)

as the source of the assignment setLi . However, note that this interpretation differs from an actual
single-assignment setting whereL := |L| independent sources are assumed and must be inferred.
Here, we only haveK×D parametersβkd whereas in single-assignment clustering, the number of
source parameters would beL×D, which can be up to 2K ×D. The expressionβLid is rather a
‘proxy’-source, which we introduce just for notational convenience. The probability distribution of
axid generated from this structure model given the assignmentsLi and the sourcesβ is then

pS
(

xS
id |Li ,β

)

= (1−βLid)
xS

id (βLid)
1−xS

id . (3)

Note that we include the empty assignment set in the hypothesis class, i.e. a dataitem i need not
belong to any class. The corresponding rowxS

i∗ contains only zeros and any element with the value
1 in the input matrix is explained by the noise process.

In the following sections, we describe various noise models that alter the output of the structure
model. The structure part of the model together with a particular noise process is illustrated in
Figure 2.

3.1.1 STRUCTURECOMPLEXITY AND SINGLE-ASSIGNMENTCLUSTERING

In the general case, which is when no restrictions on the assignment sets are given, there areL =
2K possible assignment sets. If the number of clusters to which an object can be simultaneously
assigned is bounded byM, this number reduces toL = ∑M

m=0

(K
m

)

.
The particular case withM = 1 provides a model variant that we callSingle-Assignment Clus-

tering (SAC). In order to endow SAC with the same model complexity as MAC, we provide it with
L clusters. Each of the assignment sets is then identified with one of the clusters. The clusters
are treated (and, in particular, updated) independently of each other bycomputing the cluster pa-
rametersβL∗ for eachL , discarding the dependencies in the original formulation. The underlying
generative model of SAC, as well as the optimality conditions for its parameters, can be obtained by
treating all assignment setsL independently in the subsequent equations. With all centroids com-
puted according to Equation 2, the single-assignment clustering model yieldsthe same probability
for the data as the multi-assignment clustering model.

3.2 Noise Models and their Relationship

In this section, we first present themixture noise model, which interprets the observed data as a
mixture of independent emissions from the structure part and a noise source. Each bit in the matrix
can thus be generated either by the structure model or by an independentglobal noise process. We
then derive a more general formulation for this noise model. Starting there, we derive theflip model,
where some randomly chosen bits of the signal matrixxS are flipped, either from 0 to 1 or from 1 to
0. The noisy-OR model (Pearl, 1988) is a special case of the flip noise model, allowing only flips
from 0 to 1.
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The different noise models have different parameters. We denote the noise parameters of a
model α by Θα

N. The full set of parameters for structure and noise is thenΘα := (β,Θα
N). As

additional notation, we use the indicator functionI {p} for a predicatep, defined as

I {p} :=

{

1 if p is true
0 otherwise.

3.2.1 MIXTURE NOISE MODEL

In the mixture noise model, eachxid is generated either by the signal distribution or by a noise
process. The binary indicator variableξid indicates whetherxid is a noisy bit (ξid = 1) or a signal
bit (ξid = 0). The observedxid is then generated by

xid = (1−ξid)x
S
id +ξidxN

id ,

where the generative process for the signal bitxS
id is either described by the deterministic rule in

Equation 1 or by the probability distribution in Equation 3. The noise bitxN
id follows a Bernoulli

distribution that is independent of object indexi and dimension indexd:

pN
(

xN
id | r

)

= rxN
id (1− r)1−xN

id . (4)

Here,r is the parameter of the Bernoulli distribution indicating the probability of a 1. Combining
the signal and noise distributions, the overall probability of an observedxid is

pmix
M (xid |Li ,β, r,ξid)= pN(xid | r)

ξid pS(xid |Li ,β)1−ξid . (5)

We assumeξid to be Bernoulli distributed with a parameterε := p(ξid = 1) called thenoise fraction.
The joint probability ofxid andξid given the assignment matrixz and all parameters is thus

pmix
M (xid ,ξ |z,β, r,ε) = pM (xid |z,β, r,ξ) · εξid (1− ε)1−ξid .

Since differentxid are conditionally independent given the assignmentsz and the parametersΘmix,
we have

pmix
M (x,ξ |z,β, r) = ∏

id

pmix
M (xid ,ξ |z,β, r) .

The noise indicatorsξid cannot be observed. We therefore marginalize out allξid to derive the
probability ofx as

pmix
M (x |z,β, r,ε) = ∑

{ξ}
pmix

M (x,ξ |z,β, r,ε)

= ∏
id

(ε · pN(xid)+(1− ε) · pS(xid)) .

The observed datax is thus a mixture between the emissions of the structure part (which has weight
1− ε) and the noise emissions (with weightε). Introducing the auxiliary variable

qmix
Lid := pmix

M (xid = 1 |z,β, r,ε) = εr +(1− ε)(1−βLid)

to represent the probability thatxid = 1 under this model, we get a data-centric representation of the
probability ofx as

pmix
M (x |z,β, r,ε) = ∏

id

(xid qmix
Lid +(1−xid)

(

1−qmix
Lid

)

) . (6)

The parameters of the mixture noise model areΘmix
N := (ε, r). Sinceε andr are independent of

d andi, we will refer toε andr as parameters of a ‘global’ noise process.
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Figure 2: The generative model of Boolean MAC with mixture noise.Li is the assignment set of
objecti, indicating which Boolean sources fromu generated it. The bitξid selects whether
the noise-free bitxS

id or the noise bitxN
id is observed.

3.2.2 GENERALIZED NOISE MODEL

In this section, we generalize the mixture noise model presented above. Doing so, we achieve a
generalized formulation that covers, among others, the mentioned noisy-ORmodel.

The overall generation process has two steps:

1. The signal part of the data is generated according to the sources, asdescribed in Section 3.1.
It is defined by the probabilitypS

(

xS
id |Li ,β

)

(Equation 3).

2. A noise process acts on the signalxS and thus generates the observed data matrixx. This noise
process is described by the probabilitypα(xid |xS

id ,Θ
α
N), whereα identifies the noise model and

Θα
N are the parameters of the noise modelα.

The overall probability of an observationxid given all parameters is thus

pα
M (xid |Li ,β,Θα

N) = ∑
xS

id

pS
(

xS
id |Li ,β

)

· pα (xid |x
S
id,Θ

α
N

)

.

3.2.3 MIXTURE NOISE MODEL

The mixture noise model assumes that eachxid is explained either by the structure model or by
an independent global noise process. Therefore, the joint probabilityof pmix

(

xid |xS
id,Θ

mix
N

)

can be
factored as

pmix (xid |x
S
id,Θ

mix
N

)

= pmix
M

(

xid |x
S
id ,x

N
id,ξid

)

· pmix
N (xN

id|r) ,

with

pmix
M

(

xid |x
S
id ,x

N
id,ξid

)

=
(

I {xS
id=xid}

)1−ξid
(

I {xN
id=xid}

)ξid
.
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pS(xS
id |Li ,β) and pmix

N (xN
id |r) are defined by Equation 3 and Equation 4 respectively. Summing out

the unobserved variablesxS
id andxN

id yields

pmix
M (xid |Li ,β, r,ξid) =

1

∑
xS

id=0

1

∑
xN

id=0

pmix
M

(

xid ,x
S
id,x

N
id|Li ,β, r,ξid

)

= pS(xid |Li ,β)1−ξid · pmix
N (xid |r)

ξid

= (1−ξid)pS(xid |Li ,β)+ξid pmix
N (xid |r) .

Integrating out the noise indicator variablesξid leads to the same representation as in Equation 5.

3.2.4 FLIP NOISE MODEL

In contrast to the previous noise model, where the likelihood is a mixture ofindependentnoise
and signal distributions, the flip noise model assumes that the effect of the noise depends on the
signal itself. The data is generated from the same signal distribution as in the mixture noise model.
Individual bits are then randomly selected and flipped. Formally, the generative process for a bitxid

is described by
xid = xS

id⊕ξid ,

where⊕ denotes addition modulo 2. Again, the generative process for the structure bit xS
id is de-

scribed by either Equation 1 or Equation 3. The value ofξid indicates whether the bitxS
id is to be

flipped (ξid = 1) or not (ξid = 0). In a probabilistic formulation, we assume that the indicatorξid for
a bit-flip is distributed according toξid ∼ p(ξid|xS

id,ε0,ε1). Thus, the probability of a bit-flip, given
the signal and the noise parameters(ε0,ε1), is

p(ξid|x
S
id,ε0,ε1) =

(

εxS
id

1 ε1−xS
id

0

)ξid
(

(1− ε1)
xS

id (1− ε0)
1−xS

id

)1−ξid
,

with the convention that 00 = 1. Given the flip indicatorξid and the signal bitxS
id , the final observa-

tion is deterministic:

pflip
M (xid|ξid,x

S
id) = x

I
{ξid 6=xS

id}

id (1−xid)
I
{ξid=xS

id} .

The joint probability distribution is then given by

pflip
(

xid |x
S
id,Θ

flip
N

)

=
1

∑
ξid=0

pflip
M (xid |ξid,x

S
id) · p(ξid|x

S
id,ε0,ε1) .

3.2.5 RELATION BETWEEN THENOISE PARAMETERS

Our unified formulation of the noise models allows us to compare the influence ofthe noise pro-
cesses on the clean signal under different noise models. We derive theparameters of the flip noise
model that is equivalent to a given mixture noise model based on the probabilities pmix(xid |xS

id,Θ
α
N)

andpflip(xid |xS
id,Θ

α
N), for the cases(xid = 1,xS

id = 0) and(xid = 0,xS
id = 1):

The mixture noise model withΘmix
N = (ε, r) is equivalent to the flip noise model withΘflip

N =

(ε · r,ε · (1− r)). Conversely, we have that the flip noise model withΘflip
N = (ε0,ε1) is equivalent to

themixture noise modelwith Θmix
N =

(

ε0+ ε1,
ε0

ε0+ε1

)

.
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Hence the two noise-processes are just different representations ofthe same process. We there-
fore use only the mixture noise model in the remainder of this paper and omit the indicatorα to
differentiate between the different noise models.

3.2.6 OBJECT-WISE AND DIMENSION-WISE NOISE PROCESSES

In the following, we extend the noise model presented above. Given the equivalence of mix and flip
noise, we restrict ourselves to the mixture noise model.

Dimension-wise Noise.Assume a separate noise process for every dimensiond, which is pa-
rameterized byrd and has intensityεd. We then have

p(x |z,β,ε) = ∏
i,d

(

εdrxid
d (1− rd)

1−xid +(1− εd)(1−βLid)
xid β1−xid

Lid

)

.

Object-wise Noise.Now assume a separate noise process for every objecti, which is parame-
terized byεi andr i . As before, we have

p(x |z,β,ε) = ∏
i,d

(

εir
xid
i (1− r i)

1−xid +(1− εi)(1−βLid)
xid β1−xid

Lid

)

.

Note that these local noise models are very specific and could be used in thefollowing appli-
cation scenarios. In role mining, some permissions are more critical than others. Hence it appears
reasonable to assume a lower error probability for the dimension representing, for example, root
access to a central database server than for the dimension representingthe permission to change the
desktop background image. However we observed experimentally that theadditional freedom in
these models often leads to an over-parametrization and thus worse overallresults. This problem
could possibly be reduced by introducing further constraints on the parameters, such as a hierarchi-
cal order.

4. Inference

We now describe an inference algorithm for our model. While the parametersare ultimately inferred
according to the maximum likelihood principle, we use the optimization method ofdeterministic
annealingpresented in Buhmann and Kühnel (1993) and Rose (1998). In the following, we specify
the deterministic annealing scheme used in the algorithm. In Section 4.2 we then give the character-
istic magnitudes and the update conditions in a general form, independent ofthe noise model. The
particular update equations for the mixture model are then derived in detail inSection 4.3.

4.1 Annealed Parameter Optimization

The likelihood of a data matrixx (Equation 6) is highly non-convex in the model parameters and a
direct maximization of this function will likely be trapped in local optima. Deterministic annealing
is an optimization method that parameterizes a smooth transition from the convex problem of maxi-
mizing the entropy (i.e. a uniform distribution over all possible clustering solutions) to the problem
of minimizing the empirical riskR. The goal of this heuristic is to reduce the risk of being trapped in
a local optimum. Such methods are also known as continuation methods (see Allgower and Georg,
1980). In our case,R is the negative log likelihood. Formally, the Lagrange functional

F :=−T logZ = EG [R]−TH
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is introduced, withZ being thepartition functionover all possible clustering solutions (see Equa-
tion 10), andG denotes the Gibbs distribution (see Equation 9 and Equation 8). The Lagrange
parameterT (called thecomputational temperature) controls the trade-off between entropy maxi-
mization and minimization of the empirical risk. MinimizingF at a given temperatureT is equiva-
lent to constraint minimization of the empirical riskRwith a lower limit on the entropyH. In other
words,H is a uniform prior on the likelihood of the clustering solutions. Its weight decreases as the
computational temperatureT is incrementally reduced.

At every temperatureT, a gradient-based expectation-maximization (EM) step computes the
parameters that minimizeF . The E-step computes the risksRiL (Equation 7) of assigning data item
i to the assignment setL . The corresponding responsibilitiesγiL (Equation 8) are computed for alli
andL based on the current values of the parameters. The M-step first computes the optimal values
of the noise parameters. Then it uses these values to compute the optimal source parametersβ. The
individual steps are described in Section 4.3.

We determine the initial temperature as described in Rose (1998) and use a constant cooling
rate (T← ϑ ·T, with 0< ϑ < 1) . The cooling is continued until the responsibilitiesγiL for all data
itemsi peak sharply at single assignment setsLi .

4.2 Characteristic Magnitudes and Update Conditions

Following our generative approach to clustering, we aim at finding the maximum likelihood solution
for the parameters. Taking the logarithm of the likelihood simplifies the calculations as products be-
come sums. Also, the likelihood function conveniently factors over the objectsand features enabling
us to investigate the risk of objects individually. We define theempirical riskof assigning an object
i to the set of clustersL as the negative log-likelihood of the feature vectorxi∗ being generated by
the sources contained inL :

RiL := logp(xi·|Li ,Θ) =−∑
d

log(xid (1−qLd)+(1−xid)qLd) . (7)

TheresponsibilityγiL of the assignment-setL for data itemi is given by

γiL :=
exp(−RiL/T)

∑L ′∈Lexp(−RiL ′/T)
. (8)

The matrixγ defines a probability distribution over the space of all clustering solutions. The ex-
pectedempirical riskEG [R] of the solutions under this probability distributionG is

EG [RiL ] = ∑
i

∑
L

γiLRiL . (9)

Finally, thestate sum Zand thefree energy Fare defined as follows.

Z := ∏
i

∑
L

exp(−RiL/T) (10)

F :=−T logZ =−T ∑
i

log

(

∑
L

exp(−RiL/T)

)

Given the above, we derive the updates of the model parameters based on the first-order condi-
tion of the free energyF . We therefore introduce the generic model parameterθ, which stands for
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any of the model parameters, i.e.θ ∈
{

βµν,ε0,ε1,ε, r
}

. Here,µ is some particular value of source
indexk andν is some particular value of dimension indexd. Using this notation, the derivative of
the free energy with respect toθ is given by

∂F
∂θ

= ∑
i

∑
L

γiL
∂RiL

∂θ
= ∑

i
∑
L

γiL ∑
d

(1−2xid)
∂qLd

∂θ
xid (1−qLd)+(1−xid)qLd

.

4.3 Update Conditions for the Mixture Noise Model

Derivatives for the mixture noise model (θ ∈
{

βµν,ε, r
}

) are:

∂qmix
Ld

∂βµν
= (1− ε)βL\{µ},d I {ν=d}I {µ∈L},

∂qmix
Ld

∂ε
= 1− r−βLd,

∂qmix
Ld

∂r
=−ε.

This results in the following first-order conditions for the mixture noise model:

∂Fmix

∂βµν
= (1− ε) ∑

Lµ∈L

βL\{µ},ν

{

∑i:xiν=1 γmix
iL

εr +(1− ε)(1−βLν)
−

∑i:xiν=0 γmix
iL

1− εr− (1− ε)(1−βLν)

}

= 0,

∂Fmix

∂ε
= ∑

d

{

∑
L

(1− r−βLd)∑i:xid=1 γmix
iL

εr +(1− ε)(1−βLd)
−∑

L

(1− r−βLd)∑i:xid=0 γmix
iL

1− εr− (1− ε)(1−βLd)

}

= 0,

∂Fmix

∂r
= ε∑

d

{

∑
L

∑i:xid=0 γmix
iL

1− εr− (1− ε)(1−βLd)
−∑

L

∑i:xid=1 γmix
iL

εr +(1− ε)(1−βLd)

}

= 0.

There is no analytic expression for the solutions of the above equations, the parametersβµν, ε, and
r are thus determined numerically. In particular, we use Newton’s method to determine the optimal
values for the parameters. We observed that this method rapidly converges, usually needing at most
5 iterations.

The above equations contain the optimality conditions for the single-assignmentclustering
(SAC) model as a special case. As only assignment setsL with one element are allowed in this
model, we can globally substituteL by k and getβL∗ = βk∗. Furthermore, since 1 is the neutral
element for multiplication, we getβL\{µ},ν = 1.

In the noise-free case, the value for the noise fraction isε = 0. This results in a significant
simplification of the update equations.

5. Experiments

In this section, we first introduce the measures that we employ to evaluate the quality of clustering
solutions. Afterwards, we present results on both synthetic and real-world data.

5.1 Evaluation Criteria

For synthetic data, we evaluate the estimated sources by their Hamming distance tothe true sources
being used to generate the data. For real-world data, the appropriate evaluation criteria depend on
the task. Independent of the task, the generalization ability of a solution indicates how well the
solution fits to the unknown underlying probability distribution of the data. Moreover, as argued in
Frank et al. (2010), the ability of a solution to generalize to previously unseen users is the appropriate
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quality criterion for the role mining problem. In the following, we introduce thesetwo measures,
parameter mismatch and generalization ability.

The following notation will prove useful. We denote byẑ andû the estimated decomposition of
the matrixx. The reconstruction of the matrix based on this decomposition is denoted byx̂, where
x̂ := ẑ∗ û. Furthermore, in experiments with synthetic data, the signal part of the matrix isknown.
As indicated in Section 3, it is denoted byxS.

5.1.1 PARAMETER M ISMATCH

Experiments with synthetic data allow us to compare the values of the true model parameters with
the inferred model parameters. We report below on the accuracies of both the estimated centroidsû
and the noise parameters.

To evaluate the accuracy of the centroid estimates, we use the average Hamming distance be-
tween the true and the estimated centroids. In order to account for the arbitrary numbering of
clusters, we permute the centroid vectorsuk∗ with a permutationπ(k) such that the estimated and
the true centroids agree best. Namely,

a(û) :=
1

K ·D
min
π∈PK

K

∑
k=1

∣

∣

∣

∣uk∗− ûπ(k)∗
∣

∣

∣

∣ ,

wherePK denotes the set of all permutations ofK elements. Finding theπ ∈ PK that minimizes the
Hamming distance involves solving the assignment problem, which can be calculated in polynomial
time using the Hungarian algorithm of Kuhn (2010). Whenever we know the true model parameters,
we will assess methods based on parameter mismatch, always reporting this measure in percent.

5.1.2 GENERALIZATION ERROR

For real world data, the true model parameters are unknown and there might even exist a model
mismatch between the learning model and the true underlying distribution that generated the input
data setx(1). Still, one can measure how well the method infers this distribution by testing if the
estimated distribution generalizes to a second data setx(2) that has been generated in the same way
asx(1). To measure this generalization ability, we first randomly split the data set along the objects
into a training setx(1) and a validation setx(2). Then we learn the factorization̂z, û based on the
training set and transfer it to the validation set.

Note that the transfer of the learned solution to the validation set is not as straight-forward in
such an unsupervised scenario as it is in classification. For transferring, we use the method proposed
by Frank et al. (2011). For each objecti in x(2), we compute its nearest neighborψNN(i) in x(1) ac-
cording to the Hamming distance. We then create a new matrixz′ defined byz′i∗ = ẑψNN(i)∗ for all i.
As a consequence, each validation object is assigned to the same set of sources as its nearest neigh-
bor in the training set. The possible assignment sets as well as the source parameters are thereby
restricted to those that have been trained without seeing the validation data. The generalization error
is then

G(ẑ, û,x(2),ψNN) :=
1

N(2) ·D

∥

∥

∥
x(2)−z′ ∗ û

∥

∥

∥
,

with z′ =
(

ẑψNN(1)∗, ẑψNN(2)∗, . . . , ẑψNN(N(2))∗

)T
,
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source 1
source 2
source 3

(a) Overlapping Sources (b) Orthogonal Sources

Figure 3: Overlapping sources (left) and orthogonal sources (right)used in the experiments with
synthetic data. Black indicates a 1 and white a 0 for the corresponding matrix element.
In both cases, the three sources have 24 dimensions.

whereN(2) is the number of objects in the validation data set and∗ is the Boolean matrix product as
defined in Equation 1. This measure essentially computes the fraction of wrongly predicted bits in
the new data set.

As some of the matrix entries inx(2) are interpreted as noise, it might be impossible to reach a
generalization error of 0%. However, this affects all methods and all modelvariants. Moreover, we
are ultimately interested in the total order of models with respect to this measure and not in their
absolute scores. Since we assume that the noise associated with the features of different objects is
independent, we deduce from a low generalization error that the algorithmcan infer sources that
explain—up to residual noise—the features of new objects from the same distribution. In contrast, a
high generalization error implies that the inferred sources wrongly predict most of the matrix entries
and thus indicates overfitting.

Note that the computation of generalization error differs from the approach taken in Streich et al.
(2009). There, onlŷu is kept fixed, and̂z is ignored when computing the generalization error. The
assignment setsz′ of the new objects are recomputed by comparing all source combinations with
a fractionκ of the bits of these objects. The generalization error is the difference of the remaining
(1−κ) bits to the assigned sources. In our experiments on model-order selection,this computation
of generalization error led to overfitting. Asz′ was computed independently from̂z, fitting all
possible role combinations to the validation data, it supports tuning one part ofthe solution to this
data. With the nearest neighbor-based transfer ofẑ, which is computed without using the validation
set, this is not possible. Overfitting is therefore detected more reliably than in Streich et al. (2009).

In order to estimate the quality of a solution, we use parameter mismatch in experiments with
synthetic data and generalization error in experiments with real data.

5.2 Experiments on Synthetic Data

This section presents results from several experiments on synthetic data where we investigate the
performance of different model variants and other methods. Our experiments have the following
setting in common. First, we generate data by assigning objects to one or more Boolean vectors
out of a set of predefined sources. Unless otherwise stated, we will use the generating sources as
depicted in Figure 3. Combining the emissions of these sources via theOR operation generates
the structure of the objects. Note that the sources can overlap, i.e. multiple sources emit a 1 at a
particular dimension. In a second step, we perturb the data set by a noise process.

With synthetic data, we control all parameters, namely the number of objects and sources, the
geometry of the Boolean source vectors (i.e. we vary them between overlapping sources and or-
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thogonal sources), the fraction of bits that are affected by the noise process, and the kind of noise
process. Knowing the original sources used to generate the data set enables us to measure the accu-
racy of the estimators, as described in Section 5.1. The goal of these experiments is to investigate
the behavior of different methods under a wide range of conditions. Theresults will help us in
interpreting the results on real-world data in the next section.

We repeat all experiments ten times, each time with different random noise. Wereport the
median (and 65% percentiles) of the accuracy over these ten runs.

5.2.1 COMPARISON OFMAC WITH OTHER CLUSTERING TECHNIQUES

The main results of the comparison between MAC and other clustering techniques are shown in
Figure 4. Each panel illustrates the results of one of the methods under fivedifferent experimental
setups. We generate 50 data items from each single source as well as fromeach combination of two
sources. Furthermore, 50 additional data items are generated without a source, i.e. they contain no
structure. This experimental setting yields 350 data items in total. The overlapping sources are used
as shown in Figure 3(a), and the structure is randomly perturbed by a mixture noise process. The
probability of a noisy bit being 1 is kept fixed atr = 0.5, while the fraction of noisy bits,ε, varies
between 0% and 99%. The fraction of data from multiple sources is 50% for the experiments plotted
with square markers. Experiments with only 20% (80%) of the data are labeledwith circles (with
stars). Furthermore, we label experiments with orthogonal sources (Figure 3(b)) with ’x’. Finally,
we use ’+’ labels for results on data with a noisy-OR noise process, i.e.r = 1.

5.2.2 BINARY INDEPENDENTCOMPONENTANALYSIS (BICA)

BICA has a poor parameter accuracy in all experiments with data from overlapping clusters. This
behavior is caused by the assumption of orthogonal sources, which failsto hold for such data. BICA
performs better on data that was modified by the symmetric mixture noise processthan on data from
a noisy-OR noise process. Since BICA does not have a noise model, the data containing noise from
the noisy-OR noise process leads to extra 1s in the source estimators. This effect becomes important
when the noise fraction rises above 50%. We observe that, overall, the error rate does not vary much
for overlapping sources.

The effect of the source geometry is particularly noticeable. On data generated by orthogonal
sources, i.e. when the assumption of BICA is fulfilled, the source parameters are perfectly recon-
structed for noise levels up to 65%. Only for higher noise levels, does the accuracy break down. The
assumption of orthogonal source centroids is essential for BICA’s performance as the poor results
on data with non-orthogonal sources show. As more data items are generated by multiple, non-
orthogonal sources, the influence of the mismatch between the assumption underlying BICA and
the true data increases. This effect explains why the source parameter estimators for non-orthogonal
centroids become less accurate when going from 20% of multi-assignments to 80%.

5.2.3 DISCRETEBASIS PROBLEM SOLVER (DBPS)

Figure 4(b) shows that this method yields accurate source parameter estimators for data generated
by orthogonal sources, and, to a lesser degree, for data sets that contain a small percentage of
multi-assignment data. As the fraction of multi-assignment data increases, the accuracy of DBPS
decreases.
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(a) Accuracy of BICA (b) Accuracy of DBPS

(c) Accuracy of INO (d) Accuracy of MAC

Figure 4: Accuracy of source parameter estimation for five different types of data sets in terms of
mismatch to the true sources. We use (circle, square, star) symmetric Bernoulli noise
and overlapping sources with three different fractions of multi-assignment data, (x) or-
thogonal sources and symmetric noise, and (+) overlapping sources and a noisy-or noise
process. Solid lines indicate the median over 10 data sets with random noise and dashed
lines show the 65% confidence intervals.

The reason for the low accuracy on multi-assignment data arises from the greedy optimization
of DBPS. It selects a new source out of a candidate set such that it canexplain as many objects as
possible by the newly chosen source. In a setting where most of the data is created by a combination
of sources, DBPS will first select a single source that equals the disjunction of the true sources
because this covers the most 1s. We call this effectcombination-singlet confusion. It is a special case
of the typical problem of forward selection. Lacking a generative modelfor source-combinations,
DBPS cannot use the observation of objects generated by source-combinations to gather evidence
for the individual sources. As a consequence, the first selected source estimates fit to the source-
combinations and not to the true individual sources. Often, the last selected sources are left empty,
leading to a low estimation accuracy.
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Note the effect of a small amount of noise on the accuracy of DBPS. The clear structure of the
association matrix is perturbed, and the candidates might contain 0s in some dimensions. As a result,
the roles selected in the second and subsequent steps are non-empty, making the solution more
similar to the true sources. This results in the interesting effect where the accuracy increases when
going from noise-free matrices to those with small amount of noise (for higher noise, it decreases
again because of overfitting).

DBPS obtains accurate estimators in the setting where the data is generated by orthogonal data
(labeled ’x’). Here, the candidate set does not contain sources that correspond to combinations of
true sources, and the greedy optimization algorithm can only select a candidate source that corre-
sponds to a true single source. DBPS thus performs best with respect to source parameter estimation
when the generating sources are orthogonal. In contrast to BICA, which benefits from the explicit
assumption of orthogonal sources, DBPS favors such sources because of the properties of its greedy
optimizer.

5.2.4 INFINITE NOISY-OR (INO)

The infinite noisy-OR is a non-parametric Bayesian method. To obtain a single result, we ap-
proximate the a posteriori distribution by sampling and then choose the parameters with highest
probability. This procedure estimates the maximum a posterior solution. Furthermore, in contrast
to BICA, DBPS, and all MAC variants, INO determines the number of sources by itself and might
obtain a value different than the number of sources used to generate the data. If the number inferred
by INO is smaller than the true number, we choose the closest true sources tocompute the parameter
mismatch. If INO estimates a larger set of sources than than the true one, the best-matching INO
sources are used. This procedure systematically overestimates the accuracy of INO, whereas INO
actually solves a harder task that includes model-order selection. A deviation between the estimated
number of sources and the true number mainly occurs at the mid-noise level (approximately 30% to
70% noisy bits).

In all settings, except the case where 80% of the data items are generated by multiple sources,
INO yields perfect source estimators up to noise levels of 30%. For highernoise levels, its accuracy
rapidly drops. While the generative model underlying INO enables this method to correctly interpret
data items generated by multiple sources, a high percentage (80%) of such data poses the hardest
problem for INO.

For noise fractions above approximately 50%, the source parameter estimators are only slightly
better than random in all settings. On such data, the main influence comes fromthe noise, while the
contribution of different source combinations is no longer important.

5.2.5 MULTI -ASSIGNMENTCLUSTERING (MAC)

The multi-assignment clustering method yields perfect parameter estimators fornoise levels up to
40% in all experimental settings considered. The case with 80% of multi-assignment data is the
most challenging one for MAC. When only 50% or 20% of the data items are generated by more
than one source, the parameter estimates are accurate for noise levels up to55% or 60% of noisy
bits. When few data items originate from a single source, MAC fails to separatethe contributions
of the individual sources. These single-source data items function as a kind of ‘anchor’ and help the
algorithm to converge to the true parameters of the individual sources. For very high noise levels
(90% and above), the performance is again similar for all three ratios of multi-assignment data.
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In comparison to the experiments with overlapping sources described in the previous paragraph,
MAC profits from orthogonal centroids and yields superior parameter accuracy for noise levels
above 50%. As for training data with little multi-assignment data, orthogonal centroids simplify the
task of disentangling the contributions of the individual sources. When a reasonable first estimate
of the source parameters can be derived from single-assignment data,a 1 in dimensiond of a data
item is explained either by the unique source which has a high probability of emitting a 1 in this
dimension, or by noise—even if the data item is assigned to more than one source.

Interestingly, MAC’s accuracy peaks when the noise is generated by a noisy-OR noise process.
The reason is that observing a 1 at a particular bit creates a much higher entropy of the parameter
estimate than observing a 0: a 1 can be explained by all possible combinations of sources having a
1 at this position, whereas a 0 gives strong evidence that all sources ofthe object are 0. As a conse-
quence, a wrong bit being 0 is more severe than a wrong 1. The wrong 0 forces the source estimates
to a particular value whereas the wrong 1 distributes its ‘confusion’ evenlyover the sources. As the
noisy-OR creates only 1s, it is less harmful. This effect could, in principle, also help other methods
if they managed to appropriately disentangle combined source parameters.

5.2.6 PERFORMANCE OFMAC VARIANTS

We carry out inference with the MAC model and the corresponding Single-Assignment Clustering
(SAC) model, each with and without the mixture noise model. These model variantsare explained
in Section 3.1.1. The results illustrated in Figure 5 are obtained using data sets with 350 objects. The
objects are sampled from the overlapping sources depicted in Figure 3(a). To evaluate the solutions
of the SAC variants in a fair way, we compare the estimated sources against all combinations of the
true sources.

5.2.7 INFLUENCE OFSIGNAL MODEL AND NOISE MODEL

As observed in Figure 5, the source parameter estimators are much more accurate when a noise
model is employed. For a low fraction of noisy bits (< 50%), the estimators with a noise model
are perfect, but are already wrong for 10% noise when not using a noise model. When inference is
carried out using a model that lacks the ability to explain individual bits by noise, the entire data set
must be explained with the source estimates. Therefore, the solutions tend to overfit the data set.
With a noise model, a distinction between the structure and the irregularities in the data is possible
and allows one to obtain more accurate estimates for the model parameters.

Multi-Assignment Clustering (MAC) provides more accurate estimates than SACand the accu-
racy of MAC breaks down at a higher noise level than the accuracy of SAC. The reason is twofold.
First, the ratio of the number of observations per model parameter differs for both model variants.
MAC explains the observations with combinations of sources whereas SAC assigns each object to
a single source only. SAC therefore uses only those objects for inference that are exclusively as-
signed to a source, while MAC also uses objects that are simultaneously assigned to other sources.
Second, using the same source in different combinations with other sources implicitly provides a
consistency check for the source parameter estimates. SAC lacks this effect as all source parameters
are independent. The difference between MAC and SAC becomes apparent when the data set is
noisy. For low fractions of noise, the accuracy is the same for both models.

478



MULTI -ASSIGNMENTCLUSTERING FORBOOLEAN DATA

Figure 5: Average Hamming distance between true and estimated source prototypes for MAC and
SAC with and without noise models respectively.

We conducted the same experiments on data sets that are ten times larger and observed the same
effects as the ones described above. The sharp decrease in accuracy is shifted to higher noise levels
and appears in a smaller noise window when more data is available.

5.3 Experiments on Role Mining Data

To evaluate the performance of our algorithm on real data, we apply MAC tomining RBAC roles
from access control configurations. We first specify the problem settingand then report on our
experimental results.

5.3.1 SETTING AND TASK DESCRIPTION

As explained in Section 2, role mining must find a suitable RBAC configuration based on a binary
user-permission assignment matrixx. An RBAC configuration is the assignment ofK roles to
permissions and assignments of users to these roles. A user can have multipleroles, and the bit-
vectors representing the roles can overlap. The inferred RBAC configuration is encoded by the
Boolean assignment matrices(ẑ, û).

We emphasize the importance of the generalization ability of the RBAC configuration: The goal
is not primarily to compress the existing user-permission matrixx, but rather to infer a set of roles
that generalizes well to new users. An RBAC system’s security and maintainability improve when
the roles do not need to be redefined whenever there is a small change in the enterprise, such as a
new user being added to the system or users changing positions within the enterprise. Moreover,
as previously explained, it is desirable that the role mining step identifies exceptional permission
assignments. Such exceptional assignments are represented by the noisecomponent of the mixture
model. In practice, one must check whether the suspected erroneous bitsare really errors or if they
were (and still are!) intended. Without additional input, one can at most distinguish between reg-
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Figure 6: A 2400×500 part of the data matrix used for model-order selection. Black dots indicate
a 1 at the corresponding matrix element and white dots indicate a 0. The full data matrix
has size 4900×1300. Rows and columns of the right matrix are reordered such that users
with the same role set and permissions of the same role are adjacent to each other, if
possible. Note that there does not exist a permutation that satisfies this condition for all
users and permissions simultaneously.

ularities and irregularities. This is a problem for all role mining algorithms: The interpretation of
the irregularities and any subsequent corrections must be performed bya domain expert. However,
minimizing the number of suspicious bits and finding a decomposition that generalizes well is al-
ready a highly significant advantage over manual role engineering. SeeFrank et al. (2010) for an
extended discussion of this point.

In our experiments, we use a data set from our collaborator containing theuser-permission
assignment matrix ofN = 4900 users andD = 1300 permissions. We will call this data setCorig

in subsequent sections. A part of this data matrix is depicted in Figure 6. Additionally, we use the
publicly available access control configurations from HP labs published by Ene et al. (2008).

To evaluate the different methods on more complex data with a higher noise level,we gener-
ate another data set̄x as follows: For the original user-permission assignment matrix ofCorig we
combine the first 500 columns and the second 500 columns by an element-wiseOR operation to
give the structure part̄xS. Afterwards, we replace 33% of the matrix entries by random bits to yield
the modified matrix̄x. This matrix exhibits both a higher structural complexity and a substantially
increased noise level than the original matrixx. We will call this modified data setCmod. We explain
the individual steps of the experiments based onCorig as a running example. All other experiments,
those onCmod and on the HP data, are carried out in the same way.
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(a) Generalization Error (b) run-time

Figure 7: Left: Generalization error on the hold-out validation set in terms of wrongly predicted
bits versus the number of roles. The other external parameters for BICAand DBPS are
determined by exhaustive search. Right: Run-time versus number of roleson a 2400×
500 access-control matrix. The selected number of roles is highlighted by vertical lines.

5.3.2 MODEL-ORDER SELECTION

INO is a non-parametric model that can compute probabilities over the infinite space of all possible
binary assignment matrices. It is therefore able to select the number of roles K during inference
and needs no external input. For DBPS, BICA, and MAC, the number of roles must be externally
selected and for DBPS and BICA, also rounding thresholds and approximation weights must be
tuned. The number of rolesK is the most critical parameter.

As a principle for guiding these model selection tasks, we employ the generalization error as
defined in Section 5.1. Out of the total of 4900 users fromCorig, we use five-fold cross-validation
on a subset of 3000 users. In each step, we split them into 2400 users for training the model
parameters and 600 users for validating them, such that each user occurs once in the validation set
and four times in the training set. The number of permissions used in this experiment is 500. We
increase the number of roles until the generalization error increases. For a given number of roles,
we optimize the remaining parameters (of DBPS and BICA) on the training sets and validation sets.
For continuous parameters, we quantize the parameter search-space into50 equally spaced values
spanning the entire range of possible parameter values.

To restrict the cardinality of the assignment sets (for MAC), we make one trial run with a large
number of roles and observe how many of the roles are involved in role combinations. A role that is
involved in role combinations is at least once assigned to a user together with at least one other role.
In our experiments onCorig, for instance, 10% ofK = 100 roles are used in role combinations and
no roles appear in combinations with more than two roles. Therefore, for subsequent runs of the
algorithm, we setM = 2 and limit the number of roles that can belong to a multiple assignment set
to 10% ofK. For largeK, such a restriction drastically reduces the run-time as the solution space
is much smaller than the space of all possible role combinations. See Section 5.4 for an analysis of
the run-time complexity of all investigated methods.
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Restricting the number of roles that can belong to a multiple assignment set riskshaving too
few role combinations available to fit the data at hand. However, such circumstances cannot lead
to underfitting whenK is still to be computed in the cross-validation phase. In the worst case, an
unavailable role combination would be substituted by an extra single role.

The performance of the three methods MAC, DBPS, and BICA as a functionof the number of
roles is depicted in Figure 7(a), left. The different models favor a substantially different number
of roles on this data set (and also on other data sets, see Table 1). For MAC, there is a very clear
indication of overfitting forK > 248. For DBPS, the generalization error monotonically decreases
for K < 150. AsK further increases, the error remains constant. In the cross-validation phase, the
internal threshold parameter of DPBS is adapted to minimize the generalization error. This prevents
excessive roles from being used as, with the optimal threshold, they are left empty. We select
K = 200 for DBPS, where more roles provide no improvement. INO selects 50 roles on average.
BICA favors a considerably smaller number of roles, even though the signal is not as clear. We
selectK = 95 for BICA, which is the value that minimizes the median generalization error onthe
validation sets.

5.3.3 RESULTS OFDIFFERENTMETHODS

The results of the generalization experiments for the four methods MAC, DBPS, BICA, and INO
are depicted in Figure 8. Overall, all methods have a very low generalizationerror on the original
data set. The error spans from 1% to 3% of the predicted bits. This result indicates that, on a global
scale,Corig has a rather clean structure. It should be stressed that most permissionsin the input data
set are only rarely assigned to users, whereas some are assigned to almost everyone, thereby making
up most of the 1s in the matrix (see a part of the data set in Figure 6). Therefore, the most trivial
role set where roles are assigned no permissions already yields a generalization error of 13.5%.
Assigning everyone to a single role that contains all permissions that more than 50% percent of the
users have, achieves 7.1%. One should keep this baseline in mind when interpreting the results.

INO, DBPS, and BICA span a range from 2.2% generalization error to approximately 3% with
significant distance to each other. MAC achieves the lowest generalizationerror with slightly more
than 1%. It appears that INO is misled by its noisy-OR noise model, which seemsto be inappropriate
in this case. MAC estimates the fraction of noisy bits byε̂ ≈ 2.8% and the probability for a noisy
bit to be 1 by ˆr ≈ 20%. This estimate clearly differs from a noisy-OR noise process (which would
haver = 1). With more than 3% generalization error, BICA performs worst. As all other methods
estimate a considerable centroid overlap, the assumption of orthogonal (non-overlapping) centroids
made by BICA seems to be inappropriate here and might be responsible for the higher error.

In our experiments on the modified data set with more structure and a higher noise level, Fig-
ure 8(b), all methods have significantly higher generalization errors, varying between approximately
10% to 21%. The trivial solution of providing each user all those permissions assigned to more than
50% of the users, leads to an error of 23.3%. Again, MAC with 10% generalization error yields
significantly lower generalization error than all the other methods. INO, DBPS, and BICA perform
almost equally well each with a median error of 20% to 21%. A generalization error of 10% is still
very good as this data set contains at least 33% random bits, even thougha random bit can take the
correct value by chance.

The lower row of Figure 8 shows the average role overlap between the roles obtained by the
different methods. This overlap measures the average number of permissions that the inferred roles

482



MULTI -ASSIGNMENTCLUSTERING FORBOOLEAN DATA

(a) Generalization Error on Original Data (b) Generalization Error on Modified Data

(c) MAC variants on Original Data (d) MAC variants on Modified Data

(e) Average Role Overlap (%) (f) Average Role Overlap (%)

Figure 8: Generalization experiment on real data. Graphs (a)-(d) show the generalization error
obtained with the inferred roles, and graphs (e)-(f) display the average overlap between
roles.

have in common. For BICA, the roles never overlap, by the definition of the method. For all
other methods, the increased overlap of the data’s structure is reflected inthe estimated roles. The
decrease in the difference in performance between BICA and the other models after processing the
modified data set indicates that the main difficulty for models that can represent overlapping roles
is the increased noise level rather than the overlapping structure. We will return to the influence of
the data set in our discussion of the results of the MAC model variants in the next section.
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5.3.4 RESULTS OFMAC M ODEL VARIANTS

To investigate the influence of the various model variants of MAC, we compare the performance
reported above for MAC with i) the results obtained by the single-assignmentclustering variant
(SAC) of the model and ii) with the model variants without a noise part. The middlerow of Figure 8
shows the generalization error of SAC and MAC, both with and without a noise model. On the
original data set, Figure 8(c), all model variants perform almost equally well. The noise model
seems to have little or no impact, whereas the multi-assignments slightly influence the generalization
error. Taking MAC’s estimated fraction of noisy bitsε̂≈ 2.8% into account, we interpret this result
by referring to the experiments with synthetic data. There the particular modelvariant has no
influence on the parameter accuracy when the noise level is below 5% (seeFigure 5.2.7). As we
seem to operate with such low noise levels here, it is not surprising that the model variants do
not exhibit a large difference on that data set. On the modified data with more complex structure
and with a higher noise level than the original data (Figure 8(d)), the difference between multi-
assignments and single-assignments becomes more apparent. Both MAC and SAC benefit from a
noise part in the model, but the multi-assignments have a higher influence.

5.3.5 RESULTS ONHP DATA

With all methods described above, we learn RBAC configurations on the publicly available data
sets from HP labs (first presented by Ene et al., 2008). The data set ‘customer’ is the access control
matrix of an HP customer. ‘americas small’ is the configuration of Cisco firewallsthat provide
users limited access to HP network resources. The data set ‘emea’ is created in a similar way and
‘firewall 1’ and ‘firewall 2’ are created by Ene et al. (2008) by analyzing Checkpoint firewalls.
Finally, ‘domino’ is the access profiles of a Lotus Domino server.

We run the same analysis as onCorig. For the data sets ‘customer’, ‘americas small’, and ‘firewall
1’, we first make a trial run with many roles to identify the maximum cardinality of assignment sets
M that MAC uses. We then restrict the hypothesis space of the model accordingly. For ‘customer’
and ‘firewall 1’, we useM = 3, for ‘americas small’ we useM = 2. For the smaller data sets, we
simply offered MAC all possible role configurations, although the model does not populate all of
them.

In the cross-validation phase we select the number of roles for each of the methods (except
for INO), and the thresholds for BICA and DBPS in the previously described way. Afterwards we
compute the generalization error on hold-out test data.

Our experimental findings are summarized in Table 1. We report the favored number of roles,
the median generalization error and its average difference to the 25% and 75%-percentiles, and the
run-time of one run, respectively. Overall, the MAC variants achieve the lowest generalization error
within the variance of this measure. For ‘americas small’ and ‘emea’ all methodsgeneralize equally
well (note the high variance for ‘emea’, which is an effect of the small sample size and the high
dimensionality of that data set). Here differences between the methods are dominated by run-time
and the number of roles that have been found. For ‘dominos’, INO and BICA are almost as good
as MAC, although with a significantly higher variance. Visual inspection of the ‘dominos’ matrix
indicates that this data set has a sparse and simple structure. Differencesbetween the methods
are most pronounced on the two ’firewall’ data sets. Remarkably, INO finds 80 roles for ‘emea’,
although this data set has only 35 users.
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Given the overall good generalization performance of MAC, we conclude that this model is a
good ‘allrounder’. This also confirms our findings in the experiments with synthetic data. Each of
the other methods shows a good performance on individual data sets but not as reliably as MAC.
Comparison with the results on synthetic data suggests that their differing performance on different
data sets is either due to different fractions of random noise or to true underlying sources with
different overlap.

customer americas small
10,021 users× 277 perms. 3,477 users× 1,587 perms.

k gen. error [%] run-time [min] k gen. error [%] run-time [min]
MAC 187 2.40±0.03 49 139 1.03±0.01 80
DBPS 178 2.54±0.05 43 105 1.00±0.03 187
INO 20 7.8±1.6 996 65.6 1.05±0.01 3691
BICA 82 2.66±0.02 200 63 1.00±0.01 64

firewall1 firewall2
365 users× 709 perms. 325 users× 590 perms.

k gen. error [%] run-time [min] k gen. error [%] run-time [min]
MAC 49 4.57±0.01 10 10 3.40±0.00 1.8
DBPS 21 13.6±3.1 5 4 19.5±4.4 2
INO 38.2 8.04±0.00 96 6.2 11.15±0.00 14
BICA 18 12.8±3.0 2.1 4 19.9±4.5 0.9

dominos emea
79 users× 231 perms. 35 users× 3,046 perms.

k gen. error [%] run-time [min] k gen. error [%] run-time [min]
MAC 7 1.73±0.00 1.1 3 8.7±1.2 0.7
DBPS 9 2.3±0.5 0.2 8 7.3±2.6 1.1
INO 26 1.7±0.1 9.0 80.4 10.1±2.4 204
BICA 3 1.9±0.3 0.1 5 8.6±2.8 1.0

Table 1: Results on HP labs data for different methods. We report the number of roles, the median
run-time of one run, as well as the median generalization error and the half inter-percentile
distance between 25% and 75%.

5.4 Complexity and Runtime

The complexity of the optimization problem is determined by the number of objects and features
and by the number of possible assignment setsL := |L|. As L can be large for even a small number
of clusters, the complexity is dominated by that number. Let the number of clusters that a data
item can simultaneously belong to be limited by thedegree M, i.e. maxL∈L |L | = M. Then the
size of the assignment set is limited byL = ∑M

m=0

(K
m

)

≤ 2K . Even for moderately sizedK andM,
this dependence results in computationally demanding optimization problems both for the inference
step as well as for assigning new data items to previously obtained clusters. However, if the data
at hand truly exhibits such a high complexity (highK andM) then also a single assignment model
needs such a high complexity (to prevent the model from underfitting). In this case, a SAC model
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must learnL sources, while the MAC variant learns theL possible combinations out ofK sources.
The number of responsibilitiesγiL (Equation 8) to be computed in the E-step is the same for both
models. However, in the M-step, MAC shares the source parameters while SAC must estimate them
separately. We will shortly elaborate on the relationship between MAC and SAC from the inference
perspective. Coming back to the complexity, the high number of responsibilitiesγiL to be computed
for MAC appears to be a model-order selection issue. One can drastically reduce its complexity by
limiting the number of assignment sets as described in Section 5.3.2.

In our experiments on real-world data in Section 5.3, we monitored the run-time,which is
depicted in Figure 7(b). Each point represents the runtime for a single runof the different algorithms
on an access-control matrix withN = 2400 users andD = 500 permissions. The number of roles
chosen by the respective method is indicated by a vertical line. For INO we report the median
number of roles selected. Note that in one run of INO, the model-order selection task is solved ‘on-
the-fly’ while the other methods require multiple runs and an external validation. This overhead is
reflected in the runtime. Considerable care is required in interpreting these results since the different
methods were implemented by different authors in different languages (Matlab for INO, BICA and
MAC, and C++ for DBPS). The DBPS implementation in C++ is impressively fastwhile the trend
of the generalization error over the number of roles is roughly comparableto MAC and BICA.
Thus, for large and demanding data sets, one could employ DBPS as a fast‘scout’ to obtain an
educated guess of the model-order. In conclusion, for all the investigated algorithms the runtime is
not a limiting factor in role mining. This computation is only performed once when migrating an
access-control system to another one. It is therefore not a problem ifthe computation takes hours.

5.5 Relationship Between SAC and MAC

In the following, we show that MAC can be interpreted as a SAC model with a parameter sharing
rule. In the limit of many observations, MAC is equivalent to SAC with proxy-sources substituting
MAC’s source combinations. In order to understand the parameter sharing underlying MAC, we
write the set of admissible assignment setsL as a Boolean matrixzL ∈ {0,1}L×K . Assuming an
arbitrary but fixed numbering of assignment sets inL, zLlk = 1 means that thel th assignment set
contains sourcek, andzLlk = 0 otherwise. Hence, the assignment matrixz decomposes intoz =
zL ∗ zL, wherezL ∈ {0,1}N×L denotes the exclusive assignment of objects to assignment sets (zLil
iff object i has assignment setl , and∑l z

L

il = 1 for all i). Using this notation, the decomposition
x≈ z∗u can be extended to

x≈
(

zL ∗zL
)

∗u = zL ∗
(

zL ∗u
)

= zL ∗uSAC ,

where we have defineduSAC := zL ∗u as the proxy-source parameters of the single-assignment clus-
tering model. The same notion of proxy-sources, substituting the disjunction of individual sources,
is used in Equation 2 for the probabilistic source parameters. Asymptotically, the two models are
equivalent. However, SAC must estimateL ·D parameters, while the MAC model only usesK ·D pa-
rameters. By sharing the parameters of the assignment sets, MAC reducesthe number of parameters
to be estimated and thereby increases the number of data items available per parameter. Moreover,
the sharing rule provides a mutual inconsistency check for the involved parameter estimates. This
check is not available if parameters are estimated independently. These two points explain the higher
accuracy in the parameter estimators, which we observe in the experiments reported in Section 5.2.
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6. Conclusion and Outlook

We have presented a probabilistic method to cluster vectors of Boolean data.In contrast to the
conventional approach of mutually exclusive cluster assignments, our method enables a data item
to belong to multiple clusters. In our generative model, the clusters are the sources that generate
the structure in the data and irregularities are explained by an independentnoise process. In a
detailed analysis of our model variants, we demonstrate that the proposed method outperforms
state-of-the-art techniques with respect to parameter estimation accuracyand generalization ability.
In experiments on a real world data set from the domain of role-based access control, our model
achieves significantly lower generalization error than state-of-the-art techniques.

Throughout this paper, the BooleanORcombines the emissions of multiple sources. However,
the proposed concept is neither limited to the BooleanOR nor to Boolean data. Further work
will address the combination of other kinds of data and other combination rulessuch as additive
combinations of real numbers.
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