Paragraph: Thwarting Signature Learning by Training
Maliciously

James NewsonteBrad Karg, and Dawn Sont

1 carnegie Mellon University
2 University College London

Abstract. Defending a server against Internet worms and defendingesuemail in-
box against spam bear certain similarities. In both caseseam ofsamplesarrives,
and aclassifiermust automatically determine whether each sample falbssaimhalicious
targetclass €.g.,worm network traffic, or spam email). larnertypically generates
a classifier automatically by analyzing two labeled tragnpools: one of innocuous
samples, and one of samples that fall in the malicious tailges.

Learning techniques have previously found success inngsttivhere the content of
the labeled samples used in training is either random, ar ewastructed by a helpful
teacher, who aims to speed learning of an accurate clasgiftee case of learning clas-
sifiers for worms and spam, however, agiversarycontrols the content of the labeled
samples to a great extent. In this paper, we describe pahetitacks against learning,
in which an adversary constructs labeled samples that, wkeahto train a learner, pre-
vent or severely delay generation of an accurate clas3iieshow that even delusive
adversary, whose samples are all correctly labeled, camugbgearning. We simulate
and implement highly effective instances of these attaganst the Polygraph [15]
automatic polymorphic worm signature generation algargh

Key words: automatic signature generation, machine learning, wopams

1 Introduction

In a number of security applications)earner analyzes a pool of samples that fall in some
malicioustargetclass and a pool of innocuous samples, and must prodtlassifierthat can
efficiently and accurately determine whether subsequenpks belong to the target class.
High-profile applications of this type include automatimgeation of worm signatures, and
automatic generation of junk email (spam) classifiers.

Prior to the deployment of such a system, samples in thettelags are likely to include
a number of distinguishing features that the learner can &nd that the classifier can use
to successfully filter target-class samples from a streamixéd target-class and innocuous
samples. Before the wide deployment of automatic spamifitagioon, spam emails often
contained straightforward sales pitches. Likewise, asut@raatic worm signature generation
system has yet been widely deployed, all instances of acpdatiworm’s infection attempts
contain nearly an identical payload. The first generatioawdbmatic signature generation
systems was highly successful against these-adaptiveadversaries.

Once such a system is widely deployed, however, an inceefists forelusiveadver-
saries to evade the generated classifiers. We observe thi@ptenon today because of the
wide-spread deployment of spam classifiers. Senders of spgstoy a variety of techniques
to make a spam email look more like a legitimate email, in ganapt to evade the spam clas-
sifier [6]. Similarly, while worm signature generation sfsis are not yet widely deployed,
it is widely believed that once they are, worm authors wik wegell knownpolymorphism
techniques to minimize the similarity between infectioglpads, and thus evade filtering by
worm signatures.

In the case of worm signature generation we have a signifadwgntage: a worm infec-
tion attemptmustcontain specific exploit content to cause the vulnerablevswé to begin

executing the code contained in the payload. Furtheyuaheerability,not the worm’s author,
determines this specific exploit content. Newsaoehal. [15] showed that, for many vulner-
abilities, messages that exploit a particular vulnerghbitiust contain some set afvariant
byte strings, and that it is possible to generate an accarateefficient signature based on
this set of byte strings, even if the rest of the worm’s paglisanaximally varying—that is,
contains no persistent patterns.

Unfortunately, such an elusive adversary is not the worst chn this work, we empha-
size that these applications attempt to learn a classifien Bamples that afgrovided by a
malicious adversaryMost learning techniques used in these applications deangét this
problem setting. In particular, most machine learning atgms are designed and evaluated
for cases where training data is provided by an indifferemitye (e.g.,nature), or even by a
helpful teacher. However, in the applications under disiturs training data is provided by a
maliciousteacher.

Perdisciet al.[18] demonstrate that it is not sufficient for the learnerdietaterandom
noise (mislabeled training samples) in the training datgadrticular, Perdisat al. describe
noise-injection attacks on the Polygraph suite of autaenatirm signature generation algo-
rithms [15], through which an attacker can prevent theserdalgns from generating an ac-
curate classifier. These attacks work by causing the Patydemrner to use specially crafted
non-worm samples as target-class-labeled (worm-lab#életting data. This type of attack
is of concern when the initial classifier that identifies &rglass samples for use in training
is prone to false positives. Such an attack can be avoidedihg asoundinitial classifier to
ensure that non-target-class samples cannot be mislainédeithe target-class training data.
In the case of automatic generation of worm signatures, mastitoring techniques such
as dynamic taint analysis [3, 4, 16, 23] can prevent suchatmiding, as they reliably detect
whether the sample actually results in software being étqulo

In this work, we show that there is an even more severe coeseguo training on data
provided by a malicious teacher. We show thdetusiveé adversary can manipulate the train-
ing data to prevent a learner from generating an accurassifikx,even if the training data
is correctly labeledAs a concrete demonstration of this problem, we analyzeraéguch
attacks that are highly effective against the Polygrapbraatic worm signature generation
algorithms. We also illustrate the generality of this peshlby describing how these same
attacks can be used against the Hamsa [9] polymorphic waynagire generation system,
and against Bayesian spam classifiers.

Our contributions are as follows:

— We define the classifier generation problem as a learnindgmoin an adversarial envi-
ronment.

— We describe attacks on learning classifier generators tliatvie careful placement of
features in the target-class training data, the innocuwiirsimg data, or both, all toward
forcing the generation of a classifier that will exhibit maalse positives and/or false
negatives.

— We analyze and simulate these attacks to demonstrate ffiedércg in the polymorphic
worm signature generation context. We also implement thememonstrate their prac-
ticality.

We conclude that the problem of a delusive adversary musikentinto account in the
design of classifier generation systems to be used in adiadrsettings. Possible solutions
include designing learning algorithms that are robust ttiaioaisly generated training data,
training using malicious data samplest generated by a malicious source, and performing
deeper analysis of the malicious training data to deterrinesemantic significance of the
features being included in a classifier, rather than trgat@mples as opaque “bags of bits.”

We proceed in the remainder of this paper as follows. In Se&j we define the classifier
generation problem in detail. We next describe attacksagbsarning classifier generatorsin

1 delusive: Having the attribute of deluding, .. ., tendingletude, deceptive [17].

Sections 3 and 4. We discuss implications of these attaokis fbr worm signature generation
and for spam filtering, in Section 5. After reviewing relatedrk in Section 6, we conclude
in Section 7.

2 Problem Definition: Adversarial Learning

Suspicious
Unlabel / Pool ™
Samples | Initial Labeled Learner = Classifier
ClassifieriainIO'&s
Innocuous/
Pool

Fig. 1. Schematic of a learner, which uses innocuous and suspitt@ingng pools to generate an accu-
rate classifier.

We now elaborate on the learning model mentioned in the pus\section, as followed by
Polygraph for worm signature generation, and by Bayesistesys for spam filter generation,
with the aim of illuminating strategies an adversary maymdoan attempt to cause learning
to fail. We begin by describing the learning model, and exaingj the criteria that must be
met for learning to succeed. We then consider the assungitieriearning model makes, and
why they may not always hold in practice. Finally, we deseigieneral strategies féwrcing
the assumptions the model makes to be violated.

2.1 Learning Model

Identifying worms or spam so that they may be filtered is dtéart a classification problem:
we seek a classifier that, given a sample, will label that $amp being of théarget class
(e.g.,aworm infection attempt, or a spam email) or as innocuous.1i®ay derive a classifier
automatically bylearningone. Overall, learning involves initially labeling some eésam-
ples to train dearner, which, based on their content, generates a classifier.prbisess is
depicted in schematic form in Figure 1.

The raw input to a learning system consistauofabeled sampledn the case of worm
signature generation, these are individual network flowqes observed at a network mon-
itoring point; in the case of Bayesian spam filter generatibay are individual email mes-
sages arriving in a user’s inbox. Note that an adversary méyeince the content of these
unlabeled samples to a varying extent; we return to thistgaier in this section.

The unlabeled samples are first labeled by an initial classBiamples labeled as being
in the target class are placed in thespicious poolSamples labeled a®tbeing in the target
class are placed in thienocuous poollt may seem circular to begin the process of deriving
a classifier with a classifier already in hand. It is not. Ttassifier used to perform the initial
labeling of samples typically has some combination of prigethat makes it unattractive
for general use, such as great computational cost or inacguwWe consider this classifier
used for the initial labeling of samples below.

Once these samples have been labeled, the learner andigfesttiresfound in the sam-
ples in each pool, and produces a classifier. Machine legualiows a very broad definition
of what may constitute a feature. In this work we focus on tmeeovhere each feature is the
presence or absence afaden or contiguous byte string, though our results are gerestalie
to other types of features.

FeedbackNote that throughout this paper, we optimistically assuhrag the system uses
an intelligent feedback loop. For example, if the systeniectd 10 target-class samples,

\

generates a classifier, and later collects 10 new targs$-slmples, it generates an updated
classifier using all 20 samples in its suspicious pool, ratth@n generating a new classifier
using only the latest 10. How to achieve this property is i@ptibn-specific, and outside the
scope of this work. This property is crucially importantodiserwise the attacker can prevent
the learner froneverconverging to a correct classifier.

2.2 Successful Learning

To understand how an adversary might thwart learning, wet firss understand what con-
stitutes successful learning. Using labeled pools of sasphe learner seeks to generate a
classifier that meets several important criteria. Firg,dlassifier should be computationally
efficient; it should be able to label samples at their fulhadrrate (in the case of worm fil-
tering, at a high link speed). The classifier should alsolakhi false negatives; it should
correctly classify all target-class samples as such. ltishalso exhibit very few or no false
positives; it should not classify non-target-class saspkebeing in the target class.

The learner must be able to generate an accurate classifigraiseasonably small num-
ber of labeled target-class samples. An adversary canedguardermine the usefulness of
the system by increasing the number of labeled target-sksples necessary to generate an
accurate classifier. This is especially true in the case toinaatic worm signature generation,
where a worm infects ever-more vulnerable hosts while imgidata is being collected.

2.3 Limitations of Initial Classifier

Let us now return to the initial classifier used to label samapand the properties that make
it inappropriate for general use (and thus motivate theraated derivation of a superior
classifier through learning). First, the initial classifrany be too expensive to use on all
samples. For example, systems like TaintCheck [16] andxbewtion monitoring phase of
Vigilante [3] identify flows that cause exploits very accialg, but slow execution of a server
significantly. In the case of spam, it is most often a user witially labels inbound emails
as spam or non-spam. Clearly, the user is an “expensivesifitxs In both these application
domains, the aim is to use the expensive classifier spariagtgin a learner to generate a far
less expensive classifier.

In addition, the classifier used to label samples initialpften error-prone; it may suffer
from false positives and/or false negatives. For examjdssifying all samples that originate
from a host whose behavior fits some coarse heuristi: 0riginating more than a thresh-
old number of connections per unit time) risks flagging inmmes samples as suspicious. A
coarse heuristic that errs frequently in the opposite tdoade.g.,classifying as suspicious
only those samples from source addresses previously segamttecan) risks flagging suspi-
cious samples as innocuoued.,a hit-list worm does not port scan, but is still in the target
class).

2.4 Assumptions and Practice

Given that the initial classifier is error-prone, conside tontent of the two labeled pools
it produces. Ideally, the innocuous pool contains legitemaaffic that exactly reflects the
distribution of current traffic. In reality, though, it mapn First, because the classifier used
in initial labeling of samples is imperfect, the innocuoa®pmight well include target-class
traffic not properly recognized by that classifier. Moreg#ee innocuous pool may contain
traffic that is not target-class traffic, but not part of thpresentative innocuous traffic mix;
an adversary may send non-target-class traffic to caussdhisf mislabeling. Finally, the
innocuous pool may not reflecurrent traffic; it may be sufficiently old that it does not
contain content common in current traffic.
The suspicious pool is essentially a mirror image of the auowis pool. I1deally, it con-

tains only samples of the target class. But as before, theefladkassifier may misclassify

\%

innocuous traffic as suspicious, resulting in innocuouii¢ran the suspicious pool. Addi-
tionally, an adversary may choose to send non-target-taff in such a way as to cause
that traffic (which is innocuous in content) to be classifisdaspicious.

Formal proofs of desirable properties of machine learniggrithms €.g.,fast conver-
gence to an accurate classifier with few labeled samples) tiemssume that the features
present in samples are determined randomly, or in somecapipls, that delpful teacher
designs the samples’ content with the aim of speeding legriwe note that using learning
to generate classifiers for worms constitutes learning amitfalicious teacherthat is, the ad-
versary is free to attempt to construct target-class sawpth the aim of thwarting learning,
and to attempt to force the mislabelings described abovedoro

2.5 Attack Taxonomy

There are a number of adversarial models to consider. licpéat, there are three potential
adversary capabilities that we are interested in:

— Target feature manipulation. The adversary has some power to manipulate the features
in the target-class samples. Some featuresrapessaryor the target-class samples to
accomplish their purpose (g, successfully hijack program execution in a worm sample,
or entice the reader to visit a web-site in a spam email). @ heg a variety of techniques
to minimize or obfuscate these necessary features, sucbras polymorphism. A less-
studied technique that we investigate is the inclusion ditaahal, spurious features in
the target-class samples, whose sole purpose is to misiededrner.

— Suspicious pool poisoningThe adversary may attempt to fool the initial classifiertsuc
that non-target-class samples are put into the suspicioak phese samples may be
specially constructed to mislead the learner.

— Innocuous pool poisoningThe adversary may attempt to place samples into the innocu-
ous pool. These could be target-class samples, or nontelags samples that nonethe-
less mislead the learner.

We propose two types of attack that the adversary can perfismy one or more of the
above techniques:

— Red herring attacks. The adversary incorporates spurious features into thettafgss
samples to cause the learner to generate a classifier thendepn those spurious fea-
tures instead of or in addition to the necessary targesdksures. The adversary can
evade the resulting classifier by not including the spurfeasures in subsequently gen-
erated target-class samples.

— Inseparability attacks. The adversary incorporates features found in the innocpoois
into the target-class samples in such a way as to make it sitgesfor the learner to
generate a classifier that incurs both few false positivdsam false negatives.

In this work we demonstrate highly effective attacks of biythes that assume only a
delusive adversary—one who provides the learner with correctlylbéaining data, but
who manipulates the features in the target-class samplesstead the learner. We further
demonstrate how an adversary with the ability to poison tiepisious pool, the innocuous
pool, or both, can more easily perform inseparability &sac

Having sketched these strategies broadly, we now turn teritéérsg the attacks based on
them in detail.

3 Attacks on Conjunction Learners

One way of generating a classifier is to identify a set of festthat appears in every sample
of the target class. The classifier then classifies a samglesive if and only if it contains
every such feature.

Vi

We construct two types of red herring attacks against learokthis type. We use the
Polygraph conjunction learner as a concrete example fdysied15]. In the Polygraph con-
junction learner, the signature is the set of features thatian every sample in the malicious
training pool? In Section 5 we discuss the effectiveness of these attackssidHamsa [9], a
recently proposed Polygraph-like system. We show thatttlaeks described here are highly
effective, even under the optimistic assumption that thiaas training pool contains only
target-class samples.

In Section 3.3, we show that even in a highly optimistic scena polymorphic worm
that Polygraph could stop after only .5% of vulnerable hastsnfected can use these attacks
to improve its infection ratio to 33% of vulnerable hosts.

3.1 Attack l: Randomized Red Herring Attack

Attack Description The learner’s goal is to generate a signature consisting afrfeatures
found in every target-class sample. In fReandomized Red Herringttack, the attacker in-
cludes unnecessary, spurious features in some target-class samples, with the goalabt tri
ing the learner into using those features in its signatuseaAesult, target-class samples
that donotinclude the set of spurious features that are in the sigaeae able to evade the
signature.

The attacker first chooses a setoofpurious features. The attacker constructs the target-
class samples such that each one contains a particulaosptieiature with probabilitp. As
a result, the target-class samples in the learner’s mabqgomol will all have some subset of
the a spurious features in common, and those spurious featutiegppear in the signature.
The signature will then have false negatives, because raaggttclass samples will not have
all of those features.

Analysis We first find how selection ot and p affect the expected false negative rate.

Theorem 1 The expected false negative ratésFor a signature generated from s target-
class samples, where each target-class sample has pritggbibf including each oér spu-
rious features, is g = 1— p@P’,

Derivation The expected number of spurious features that will be iredluich a signature
after collectings samples iso = a p®. The chance of alb of those spurious features being
present in any given target-class samplgsfisHence, the expected false negative rate of the
signature i/ = 1 — p°, which we rewrite ay = 1 — p?P’.

The attacker has two parameters to choose: the number abspdeaturesx, and the
probability of a spurious feature occurring in a targesslsample. The attacker will use as
high ana as is practical, often limited only by the number of additibimytes that the attacker
is willing to append.

The ideal value op is not clear by inspection. A highgrresults in more spurious fea-
tures incorporated into the signature, but it also meanshigespurious features that do get
included in the classifier are more likely to occur in othegéd-class samples. We find the
best value ofp by finding the roots of the derivativ@% = —ap?P*+s-1(dn(p) + 1). There
are two rootsp = 0 minimizes false negatives (it is equivalent to not perfiogrthe attack

1 . .
at all), andp = e s maximizes false negatives.

Theorem 2 The value of p that maximizes the false negative rate in thel®aized Red
Herring attack is: p= e s.

2 |In Section 5, we show that the hierarchical clustering afgor used by Polygraph to tolerate noise
does not protect against these attacks.

Vi

The p that generates the highest false negative rate depends onmtber of target-class
samples seen by the learngrHence, the optimal value gf depends on the exact goals of
the attacker. For a worm author, one way to choose a valyeveduld be to set a goal for
the number of machines to compromise before there is antieffeddassifier, and calculate
the number of positive samples that the learner is likelyaeehgathered by that time, based
on the propagation model of his worm and the deployment ofghmner, and then sgtto a
value that ensures there are still a large number of falsativeg at that time.

T T
Theory p=.900 ——
Theory p=.995 -------
Theory p=.999 --------
Eval p=.900 -+
Eval p=.995 --x--

False negative rate y

it L SEIWE
200 400 600 800 1000
Number of training samples s

Fig. 2. Randomized Red Herring attaak.= 400

We implemented a version of the Randomized Red Herringlatiased on this model.
We took a real buffer-overflow exploit against the ATPhttpebvserver [19], filled the attack-
code with random bytes to simulate polymorphic encryptiod abfuscation, and replaced
the 800 bytes of padding with 400 unique two-byte spurioasuiees. Specifically, we set
each two-byte token to the binary representation of itsedfigith probability p, and to a
random value with probability + p. Note that the number of spurious features used here
is conservativeln this attack, the 800 padding bytes were already use@usecthey were
necessary to overflow the buffer. The attacker could easilljuydemorebytes to use as spu-
rious features. For example, he could include additional Pheaders for the sole purpose
of filling them with spurious features.

Figure 2 shows the predicted and actual false negative aastélse number of training
samples increases, for several valuep.0lVe used values that maximized the false negative
rate whens= 10 (p = .900), whens = 200 (p = .995), and whers = 500 (p = .999). For
each data point, we generaavorm samples, and use the Polygraph conjunction learner
to generate a classifier. We then generate another 1000 vanpless to measure the false
negative rate. There are two things to see in this graph, Biis experimental results confirm
our probability calculations. Second, the attack is quéeadtating. Low values gf result in
very high initial false negatives, while high valuesprevent a low-false-negative signature
from being generated until many worm samples have beenctetie

3.2 Attack Il: Dropped Red Herring Attack

Attack description In the Dropped Red Herring attack, the attacker again clsomset o
spurious features. Initially, he includes alfeatures in every target-class sample. As a result,
the target-class samples in the learner’s malicious trgipool will all have alla spurious
features, and ablr spurious features will be included in the signature.

Once the signature is in place, all the attacker needs to @wade the signature is to
stop includingoneof the spurious features in subsequent target-class sanipie signature

Vi

will have a 100% false negative rate until the learner seesget-class sample missing the
spurious feature, and deploys an updated signature thainget requires that feature to
be present. At that point, the attacker stops including lerospurious feature. The cycle
continues until the attacker has stopped including all efspurious features.

T T T

Randomized p=.900 ——

Randomized p=.995 -------

Randomized p=.999 --------
Dropped -

Expected False negative rate y

200 400 600 800 1000
Number of training samples

Fig. 3. Dropped Red Herring compared to Randomized Red Herang,400

Attack analysis For sake of comparison to the Randomized Red Herring atéesskime that
the attacker stops including a single spurious featurertsi@mt that an updated signature is
deployed. Also assume that the learner deploys a new signaaich time it collects a new
worm sample, since each successive sample will have one tgweious feature than the
last. In that case, the classifier will have 100% false negatiintila positive samples have
been collected.

Theorem 3 The false negative rate[§ for the signature generated after s target-class sam-
ples have been collected is
Flg = { 100%ifs < a
0% ifs>a

With these assumptions, the Dropped Red Herring attackiigoaoed to the Randomized
Red Herring attack in Figure 3. When the attack is executethimmway, and there are a
moderate number of spurious features, the attack can be deitastating. The generated
signatures are useless until alfeatures have been eliminated from the signature.

While the Dropped Red Herring attack is far more effectivantthe Randomized Red
Herring attack (until the learner has droppedabpurious features from the signature), the
Randomized Red Herring attack has one important advaritageimpler to implement. The
Dropped Red Herring attack must interact with the signaeaening system, in that it must
discover when a signature that matches the current tatggs-samples has been published,
so that it can drop another feature, and remain unfiltereerdis no such requirement of the
Randomized Red Herring attack. This is not to say that theoped Red Herring attack is
impractical; the attacker has significant room for errorid/tropping a feature prematurely
will ‘waste’ a spurious feature, there is little or no pegdtir dropping a feature some time
after an updated signature has been deployed.

3.3 Attack Effectiveness

We show that even with an optimistic model of a distributephature generation system, and
a pessimistic model of a worm, employing the Randomized Redikt or Dropped Red

1e+06 T

T T
No defense
Dropped RH -------
Randomized RH (p=.999) --------
Randomized RH (p=.995) 4
Randomized RH (p=.900) ----~
Maximally Varying Polymorphic ------- |

900000

800000
700000
600000
500000
400000

300000

Vulnerable Hosts Infected

200000
100000 H

0 L "l L o n Il nl
0 1000 2000 3000 4000 5000 6000 7000 8000
Worm samples seen by learner (s)

Fig. 4. Worm propagation. L=1000, V=1000008,= 400

Herring attack delays the learner enough to infect a largetifsn of vulnerable hosts before
an accurate signature can be generated.

We assume that the learner is monitoringddresses. Each time the worm scans one of
these addresses, the learner correctly identifies it asmyard instantaneously updates and
distributes the signature. At that point, any scan of anyerdble host has probabilify[s]
of succeeding (the false negative rate of the current sigeptThere are several optimistic
assumptions for the learner here, most notably that updégedtures are distributedstan-
taneously In reality, distributing even a single signature to all fsas less than the time it
takes to infect all vulnerable hosts is a challenge 22].

We assume that the worm scans addresses uniformly at ramdoeality, there are sev-
eral potential strategies a worm author might use to mirgrttiz number of samples seen by
the learner. An ideally coordinated worm may scan everyegiiexactly once, thus minimiz-
ing the number of samples sent to any one of the learner'®adds, and eliminating ‘wasted’
scans to already-infected hosts. The worm could furtheravgpthis approach by attempting
to order the addresses by their likelihood of being monddmgthe learner, scanning the least
likely first.

We model the worm by estimating the number of additional gtdble hosts infected
in-between the learner receiving new worm samples. Notebihzause we assume signature
updates are instantaneous, the scan rate of the worm sviargl Intuitively, both the rate of
infection and the rate of the learner receiving new sampiepeportional to the scan rate,
thus canceling each other out.

Theorem 4 For a worm scanning uniformly at random, where there are Vhetdble hosts,

L addresses monitored by the learner, and N total hosts xpeaed number of infected hosts
| after s worm samples have been seen by the learner is:

I[s=1[s—1]+(V—-1[s—1]) (1_ <1_ F[SN_ 1])(N/L)>

Derivation The expected number of worm scans in-between the learneivieg a new
worm sample isb

1 _N
(scanis seen by learner L-

3 The Dropped Red Herring attack in particular is much moreaditing when taking the signature
generation and distribution time into account, since thd spurious feature is not revealed before
an updated signature is distributed. Hence, a worm ugisgurious features is allowed to propagate
freely for at leastr times the time needed to generate and distribute a signature

Innocuous Pool Susp|C|0us Po Innocuous Pool Suspicious Pog
10094 False Positive Rate False ative R4 100o4F2lse Positive Rate False Negative Ra

Rate
Rate

Fod Fos

Threshold szfp Tzfn Threshold T Tzfn Tzfp

Fig. 5. Training data distribution graph, used to Fig.6. Overlapping training data distribution
sett. T couldbe set to perfectly classify training graph. No value off perfectly classifies train-

data. ing data.

I[g = I[s— 1] + (# vulnerable uninfected hogBhost becomes infectgd

I[g =1[s— 1]+ (V —I[s—1])(1— P(host does not become infecj¢d

I[s] = I[s— 1]+ (V — I[s— 1])(1— P(scan does not infect hg&t Scans

I[s] = I[s— 1]+ (V — I[s— 1])(1— (1— P(scan infects hog}(* Scans,

g =1[s—1+(V—-I[s—1)(1—(1- P(scan contacts hg®(scan not blockey # Scans,
I8 =1[s— 1+ (V—I[s-1])(1- (1- §F[s— 1))

In Figure 4, we model the case \éf= one million vulnerable host$, = one thousand
learner-monitored addresses, ad= 2%? total addresses. In the case where the worm is
maximally-varying polymorphic, we assume that the leammegds five samples to gener-
ate a correct signature. In that case, only 4,990 (.0499%evable hosts are infected be-
fore the correct signature is generated, stopping furtheragl of the worm. By employing
the Dropped Red Herring attack, the worm author increasesdh330,000 (33.0%). The
Randomized Red Herring attack is only slightly less effegtallowing the worm to infect
305,000 (30.5%) vulnerable hosts using- .999.

Given that the Dropped Red Herring and Randomized Red Hgatiacks allow a worm
to infect a large fraction of vulnerable hosts even undey diptimistic model, it appears that
the Conjunction Learner is not a suitable signature geieratigorithm for a distributed
worm signature generation system.

4 Attacks on Bayes Learners

Bayes learners are another type of learner used in severatsadial learning applications,
including worm signature generation and spam filtering. Vsent several practical attacks
against Bayes learners, which can prevent the learnerdx@mrgenerating an accurate signa-
ture, regardless of how many target-class samples it ¢sllds a concrete example, we use
Polygraph’s implementation ofldaive Bayes learner. That is, a Bayes learner that assumes
independence between features. Non-Naive Bayes learreersoaas commonly used, due
partly to the much larger amount of training data that theyine. We believe that the attacks
described here can also be applied to other Bayes learmessipfy even non-naive ones that
do not assume independence between features.

4.1 Background on Bayes Learners

In the following discussion, we use the notatiB(x|+) to mean the probability that the
feature or set of featuresoccurs in malicious samples, aR(x|—) to denote the probability
that it occurs in innocuous samples. This learner can be suined as follows:

Xl

— The learner identifies a set of tokers, to use as features is the set of tokens that
occur more frequently in the suspicious pool than in the auoos pool. That isyo; €
o,P(oi|+) > P(oi|—). This means that the presence of soonén a sample to be clas-

sified can nevelower the calculated probability that it is a worm.
— Classifies a sample as positives(, in the target class) whenev; y}f; > T wheret is a
threshold set by the learner, apds the subset of that occurs in the particular sample.

We refer to,'sz; as theBayes scoredenoted scolg)

— We assume conditional independence between featuresel—%&?% =T ﬁgmfg

— P(ai|—) is estimated as the fraction of samples in the innocuousqmrghiningo;.

— P(oi|+) is estimated as the fraction of samples in the suspiciousquoainingg;.

— 1 is chosen as the value that achieves a false positive rate ofame thanF% in the
innocuous pool.

Setting thet Threshold The attacks we describe in this section all involve makirmifitcult
or impossible to choose a good matching threshol&pr clarity, we describe the method for
choosingr in more detail.

After the learner has chosen the feature saind calculatect!Zil ™)

(ail-)
it calculates the Bayes sco%% for each sample in the innocuous pool and suspicious
pool, allowing it to create th&raining data distribution grapfin Figure 5. The training data
distribution graph shows, for every possible thresholdatthe corresponding false positive
and false negative rates would be in the innocuous and saspitaining pools. Naturally, as
the threshold increases, the false positive rate monatyitecreases, and the false negative
rate monotonically increases. Note that Figure 5 and otla@rihg data distribution graphs
shown here are drawn for illustrative purposes, and do mweeent actual data.

There are several potential methods for choosing a thréshdlased on the training
data distribution graph. The method described in Polygfaphis to choose the value that
achieves no more thdf% false positives in the innocuous pool. One alternativesicared
was to set to T, the lowest value that achieves zero false positives inrtheduous pool.
However, in the examples studied, a few outliers in the inos pool made it impossible
to have zero false positives without misclassifying all loé tactual worm samples, as in
Figure 6. Of course, a highly false-positive-averse useidsetF to 0, and accept the risk
of false negatives.

Another tempting method for choosinmgs to set it toT, ¢, the highest value that achieves
zero false negatives in the suspicious pool. However, wa sh&ection 4.2 that this would
make the Bayes learner vulnerable to a red herring attack.

for each feature,

4.2 Dropped Red Herring and Randomized Red Herring Attacks ae Ineffective

Dropped Red Herring Attack The method just described for choosingnay seem unin-
tuitive at first. However, it was carefully designed to pnevBropped Red Herring attacks,
as illustrated in Figure 7. Suppose thratvas set tol, ¢, the threshold just low enough to
achieve zero false negatives in the training data. This reaynsmore intuitive, since it re-
duces the risk of false positives as much as possible whilildstecting all positive samples
in the malicious pool.

Now suppose that the attacker performs the Dropped Redrgeatiack. Since the spuri-
ous features occur in 100% of the target-class sampleswtifidye used in the feature set
Since each target-class sample in the malicious pool nownloas incriminating features, the
Bayes score of every target-class sample in the suspiciooisifcreases, causing the false
negative curve to be artificially shifted to the right.

4 The false positive curve may also shift towards the right.adiéress this in Section 4.3.

Xl

Innocuous Pool

S, Suspicious Po
False Positive Rate se Negative Ra

1009 _Fal

Innocuous Pool Suspicious Po

10004False Positive Rate ____ False Negative Ra

Rate

Rate

F9

Threshold szfp T‘zfn TZf Tzin”
F%

Fig. 7. Dropped Red Herring Attack. Spurious Threshold 3 : o

tokens artificially shift false negative curve to
the right. It shifts back to the left when worm
samples without the spurious tokens are added

to the suspicious pool.

Fig. 8. Correlated Outlier attack

If the learner were to set to T);,, (see Figure 7), then the attacker could successfully

perform the Dropped Red Herring attack. When a target-clasgple includes one less spu-

rious feature, its Bayes score becomes less TgpwhereT); < T/ Hence it would be

classified as negative. Eventually the learner would ggetaclass samples without that spu-
rious feature in its malicious pool, causing the false negaturve to shift to the left, and the
learner could update the classifier with a threshol@gf. At that point the attacker could
stop including another feature.

However, setting to the value that achieves no more tHa¥t false positives is robust
to the Dropped Red Herring attack. Assuming that the sparieatures do not appear in the
innocuous pool, the false positive curve of the trainingadhstribution graph is unaffected,
and hence the threshotds unaffected.

Randomized Red Herring Attack The Randomized Red Herring attack has little effect on
the Bayes learner. The Bayes score for any given targes-stample will benigherdue to the
inclusion of the spurious features. The increase will vaoyrf sample to sample, depending
on which spurious features that sample includes. Howegainassuming that the spurious
features do not appear in the innocuous pool, this has neteffie. Hence, the only potential

effect of this attack is talecreasdalse negatives.

4.3 Attack I: Correlated Outlier Attack

Unfortunately, we have found an attack tlimieswork against the Bayes learner. The at-
tacker’s goal in this attack is to increase the Bayes scdrearoples in the innocuous pool,
S0 as to cause significant overlap between the training @dde positive and false nega-
tive curves. In doing so, the attacker forces the learnehtinse between significant false
positives, or 100% false negatives, independently of tleetmethod chosen for setting the

thresholdr.

Attack Description The attacker can increase the Bayes score of innocuousaatnplising
spurious features in the target-class samples, which giseaa in some innocuous samples.
By including only a fractior3 of the a spurious features, in any one target-class sample,
innocuous samples that havealspurious features can be made to have a higher Bayes score
than the target-class samples.

The result of the attack is illustrated in Figure 8. The spusifeatures in the target-
class samples cause the false negative curve to shift toight The innocuous samples
that contain the spurious features result in a tail on theefpbsitive curve. The tail's height
corresponds to the fraction of samples in the innocuous fhablhave the spurious tokens.
As the figure shows, regardless of haws chosen, the learner is forced either to classify

X1l

innocuous samples containing the spurious features asgalstives, or to have 100% false
negatives.

The challenge for the attacker is to choose spurious festinag occur in the innocu-
ous training pool (which the attacker cannot see) in theembproportion for the attack to
work. The attacker needs to choose spurious features that imérequentlyenough in the

innocuous pool that the corresponding Bayes sé%‘e}; is large, bufrequentlyenough that

a significant fraction of the samples in the innocuous pontaia all of the spurious features;
i.e.so that the forced false positive rate is significant.

Attack Analysis We show that the attack works for a significant range of pataraeThe
attacker’'sa priori knowledge of the particular network protocol is likely tdaa him to
choose appropriate spurious features. A simple stratemyidentify a type of request in the
protocol that occurs in a small but significant fraction ajuests €.9.5%), and that contains
a few features that are not commonly found in other requékisse features are then used as
the spurious features.

We first determine what parameters will give the innocuouspdas containing the spu-
rious features a higher Bayes score than the target-clagdass For simplicity, we assume
thatP(s|—) is the same for each spurious featsre

Theorem 5 Given that each target-class sample contains the featui/sandfa spurious
features schosen uniformly at random from the seta§purious features S, samples con-
taining all a spurious features in S have a higher Bayes score than thettatgss samples
when:

P(s|-) < B and ()P < P(W|-)

The conditionP(s|—) < 3 is necessary to ensure tHfs |—) < P(s|+). Otherwise, the
learner will not use the spurious features in the Bayes ifieiss

The second condition is derived as follows:

P(S“; > % Innocuous samples have a higher Bayes score
+)

P(S

P(s|+)? P(s|+)PaP(W|

P(s[-)* = P(s|-) B“P(I-)
TS Ba(1)

P(s|-)% = P(s|-)Bap(vv\)

(—p(s\,))ﬂ"*" < P(W|—) Rearrangement

Independence assumption

Substitution

Note that while we have assumed independence betweendgdtere, the attack could

still apply to non-Naive Bayes learners, provided t&%— > méim*g is satisfied. Whether

and how it can be satisfied will depend on the specific impleatgm of the learner.

When these conditions are satisfied, the classifier mustreithssify innocuous samples
containing the spurious featur8sis positive, or suffer 100% false negatives. Either way can
be considered a ‘win’ for the attacker. Few sites will be wdl to tolerate a significant false
positive rate, and hence will choose 100% false negatiVageksare willing to tolerate the
false positive rate, then the attacker has succeeded iarperfg a denial-of-service attack.
Interestingly, the attacker could choose his spuriousrtekesuch a way as to perform a very
targeted denial-of-service attack, causing innocuoupesnf a particular type to be filtered
by the classifier.

For the threshold-choosing algorithm used by Polygraphill be set to achieve 100%

false negativesi 233 > F. Otherwise it will be set to falsely classify the samplestagring
the spurious featuresas positive.
Evaluation The Correlated Outlier is practical for an adversary to enpent, even though he

must make an educated guess to choose the set of spuriowefetiat occur with a suitable
frequency in the innocuous pool.

XV

1
1 : : " N= 0% a=10 B=30%
a=5 =30% N=10% a=10 =30% -------
=10 =30% ------- 08 L N=50% =10 B=30% -------- |
08 L =100 B=30% -------- i - N=90% a=10 B=30%
— T 06 E
Z 06 R @
&L o
3 04 J— i
g o4} 1 = -
0.2 R
e 0 ! | | |
0 ! : ! 0 0.0002 0.0004 0.0006 0.0008 0.001
0 0.0002 0.0004 0.0006 0.0008 0.001 POWD)

PWI-)

Fig. 10. Correlated Outlier attack evaluation,

Fig. 9. Correlated Outlier attack evaluation ;
with chaff

There are four parameters in Theorem 5 that determine whigtbettack is successful.
The attacker chooseas, how many spurious features to use, ghdthe fraction of those
spurious features to include in each target-class sampkeliRelihood of success increases
with greatera. However, since he must fin spurious features that are highly correlated in
the innocuous pool, relatively low values are the most jizakt

The third parameter, the frequency of the target-classufeatin the innocuous pool
P(W|—) is out of the attacker’s hands. High valuesR§iV|—) make the attack easiest. In-
deed, ifP(W|—) is high, the learner is already forced to choose betweea fagatives, and
significant false positives. We show the attack is still ficat for low values ofP(W|—).

The fourth parameter, the frequency of the spurious feafarthe innocuous po®i(s|—),
is not directly controlled by the attacker. The attackehaltenge is to choose the spurious
features such th&(s|—) is low enough that the attacker succeeds in getting the i
features with albr of the spurious featureto have a higher Bayes score than the target-class
samples.

Figure 9 shows that the attack can succeed for a wide rangmli$tic parameters. Each
curve in the graph represents a different attacker choice.cks P(W|—) increases, the
maximum value of(s|—) also increases. Even for very low valuesRi{fV|—) anda, the
attacker has a great deal of room for error in his estimatfdi(g|—).

Again, any value that satisfies these constraints will fahgethe learner to choose be-
tween false negatives and false positives, and the classiflenot improve as more target-
class samples are obtained. If the learner uses the Polytirggshold-setting algorithm, then

7 will be set to achieve 100% false negativesi 3 > F. Otherwise it will be set to have
low false negatives, but will classify the samples contairthe spurious featureé®as posi-
tive. The signature will not improve, and as long as it is ie,usgitimate samples containing
those samples will be false positives, causing a targeteididaf service.

4.4 Attack II: Suspicious Pool Poisoning

Up to this point we have assumed that the suspicious and urmuscpools are noise-free.
That is, the suspicious pool contains only target-clasg#zsnand the innocuous pool con-
tains only innocuous samples. In some cases, however, tdekat may be able to inject
constructed samples into the suspicious pool, the innacpool, or both, as described in
Section 2. We first consider the case where the attackeréstalihjectchaff specially con-
structed samples, into the suspicious pool.

Attack Description The chaff can simultaneously have two effects. First, bym@duding the
actual target-class featurds the classifier will calculate a low&{W|+). The actual target-
class samples in the suspicious pool will have lower Bayesescas a result, stretching the
false negative curve of the training data distribution grapthe left.

XV

Second, the classifier will calculate a higlfés |+) for any spurious featurg included
in the chaff. This will cause innocuous samples containirasé features to have a higher
Bayes score, stretching the false positive curve of thaitrgidata distribution graph to the
right, in the same manner as in the Correlated Outlier atteiure 8).Unlike the target-
class samples, each chaff sample can corgthiof the spurious features, since it makes no
difference to the attacker whether the chaff samples assifiled as positive by the resulting
Bayes classifier.

Attack Analysis The attacker’s goal is again to force the learner to choosedsm false
positives and false negatives, by ensuring that the scoaesample containing att of the
spurious featureS has a higher Bayes score than a sample containing the tiget-zlass
featuredV, and a fractior of the spurious features. Assuming that the chaff in theisicsps
pool contains albr of the spurious features, the attacker can include fewaimmifeatures
in the actual target-class samples, or even none at all.

Theorem 6 Suppose that the fraction N of samples in the suspiciousipabhff containing
the spurious features S. Samples containingaakipurious features have a higher Bayes
score than samples containing the actual target-classifeatW and the fractiop of thea
spurious features when:

P(s|-) < N+ (1= N)B and (1 - N)(MpER)Pa-a < pw|-)

When these conditions are satisfied, this attack becomésadent to the Correlated Out-
lier attack. Notice that when there is no ch@ff = 0) these conditions simplify to the condi-
tions presented in Section 4.3.

Evaluation We perform a similar evaluation as in Section 4.3. In thisec#se attacker uses

a relatively low number of spurious featur@s<£ 10), and each curve of the graph represents
different ratios of chaff in the suspicious pool. Figure Hows that the addition of chaff
to the suspicious pool greatly improves the practicalityhef attack. The resulting classifier
will again either have 100% false negatives, or cause tagit samples with the spurious
features to be blocked.

4.5 Attack Ill: Innocuous Pool Poisoning

We next consider the case where the attacker is able to ptisannocuoudraining pool.
The most obvious attack is to attempt to get samples withatfgeet-class featurd¥ into the
innocuous pool. If the target-class samples include ordyéhature$V (no spurious features),
then it would be impossible to generate a classifier thasifled the target-class samples as
positive without also classifying the samples that thecktta injected into the innocuous
pool as positive. Hence, the learner could be fooled int@ebielg that a low-false-positive
classifier cannot be generated.

The solution to this problem proposed by Polygraph [15] faioanatic worm signature
generation is to use a network trace taken some tiago, such that is greater than the
expected time in-between the attacker discovering theerability (and hence discovering
what the worm featured/ will be), and the vulnerability being patched on most vuéide
machines. The time periadis somewhat predictable assuming that the attacker does not
discover the vulnerability before the makers of the vulbérasoftware do. Conversely,
could be an arbitrary time period for a “zero-day” exploibwever, we show that a patient
attacker can poison the innocuous pool in a useful Wweforehe knows what the worm
featuredw are.

Attack Description The attacker can aid the Correlated Outlier attack by imjgapurious
tokens into the innocuous pool. In this case, using an otettiar the innocuous pool does not
help at all, since the attacker does not need to Kbat the time of poisoning the innocuous
pool. That is, an attacker who does not yet have a vulnetahiliexploit can choose a set of
spurious featureS, and preemptively attempt to get samples contaifigto the learner’s

XVI

innocuous pool, thus increasiS|—). The attacker can then use these spurious features
to perform the Correlated Outlier attack, optionally peism the suspicious pool as well as
described in Section 4.4.

Attack Analysis If the attacker is able to inject samples containfigto the innocuous pool,
P(S—) will be increased. The attacker’s best strategy may be tespggous features that
do not occur at all in normal traffic. This would allow him to necaccurately estimate the
learner'sP(§—) when designing the worm.

Aside from this additional knowledge, the attack procee@s#y as in Section 4.4.

Evaluation The success of the attack is determined by the same modeTagarem 6. The
addition of the injected spurious features helps make ttaekaimore practical by allowing
him to more accurately predict a set of spurious featurditraur together in a small fraction
of the innocuous training pool. Success in the attack wiliagither result in the classifier
having 100% false negatives, or result in innocuous sangole&ining the spurious features
to be blocked.

5 Discussion

5.1 Hierarchical Clustering

Polygraph [15] implements a hierarchical clustering altpon to enable its conjunction and
subsequence learners to work in the presence of non-worplsain the suspicious training
pool. Each sample starts as its own cluster, and clustergraeglily merged together. Each
cluster has a signature associated with it that is the iet#icn of the features present in the
samples in that cluster. The greedy merging process favostecs that produce low-false-
positive signatures;e., those that have the most distinguishing set of featuresinneon.
When no more merges can be performed without the resultingferi having a high-false-
positive signature, the algorithm terminates and outpsigrature for each sufficiently large
cluster. Ideally, samples of unrelated worms are each iim dven cluster, and non-worm
samples are not clustered.

One might wonder whether the hierarchical clustering allgor helps to alleviate the
Randomized Red Herring or Dropped Red Herring attacks.dsamt.

First consider the Randomized Red Herring attack. Each waample has the set of
features that must be presewt, and some subset of a set of spurious featuseKeep in
mind that the attacker’s goal is for the resulting signatartee toospecific If the hierarchical
clustering algorithm puts all the worm samples into oneteltsvhich is likely, the resulting
signature will be exactly the same as if no clustering wesluf it does not, the resulting
signature can only beorespecific, which further increases false negatives.

For example, suppose one cluster contains spurious featyre, andss, and another
cluster contains spurious featurgs sz, ands;. Both clusters contain the necessary worm
featuredV. If these clusters are merged together, the resulting sigaa the conjunction
(WA AS3)

If the clusters are not merged, then the learner will pubtiieh signatures. Assuming both
signatures are used, this is equivalent to the single sigaat

WASIASAS)V (WASSASSAS)

This can be rewritten as:

(WA Asg) A (S1V s4)

Obviously, this is more specific than the signature that widalve resulted if the two clusters
were merged, and hence will have strictly more false negsitiv

The same is true for the Dropped Red Herring attack, by sim@lasoning. Again, if all
samples of the worm are merged into one cluster, the resetjus/alent to if no clustering
were usedNot merging the samples into a single cluster can only make greagire more
specifi¢ which further increases false negatives.

XVII

5.2 Attack Application to Other Polymorphic Worm Signhature Generation Systems

At this time, the only automatic polymorphic worm signatgeneration systems that are
based on learning are Polygraph [15] and Hamsa [9]. Throuigihés paper, we have used
Polygraph’s algorithms as concrete examples. Hamsa gesaranjunction signatures, with
improved performance and noise-tolerance over Polygraplyenerate a conjunction sig-
nature, Hamsa iteratively adds features found in the sigm@ool, preferring features that
occur in themostsamples in the suspicious pool and result in sufficiently false positives
in the innocuous pool.

We begin with two observations. First, the adversary case&lamsa to use spurious fea-
tures in its signature, as long as those features occurisuafiizinfrequently in the innocuous
pool, and occur at least as often in the suspicious pool astb¢arget-class features. Second,
the false-negative bounds proven in the Hamsa paper only &pthe target-class samples
actually found in the suspicious pool, and not necessarifubsequently generated samples.

Unlike Polygraph, Hamsa stops adding features to the sigmance the signature causes
fewer false positives in the innocuous pool than some peedeted threshold. As a re-
sult, Hamsa is relatively resilient to the Randomized RediHg attack. For example, using
o = 400, p = .995, Hamsa exhibits only 5% false negatives after collgcti®O target-class
samples. While this incidence is still non-trivial, it is Bnprovement over Polygraph'’s cor-
responding 70% false negatives with these parameters.

Hamsa is also less vulnerable to the Dropped Red Herringkattait unfortunately not
completely invulnerable. First, let us assume that Hanmeathod of breaking ties when se-
lecting features is not predictable by the adversary (thénatedoes not appear to be defined
in [9]). In this case, the simplest form of the attack will socceed, as the adversary cannot
predict which spurious features are actually used, andehahich to drop to avoid the gen-
erated classifier. However, suppose that the attackerdstalihject noise into the suspicious
pool, and the spurious features follow some ordering of abiliies with which they appear
in a particular noise sample. This ordering then specifieqpinobable) preferential use of
each spurious feature in the generated signature. Thaeisnbst probable spurious feature
will be chosen first by Hamsa, since it will have the highesterage in the suspicious pool,
and so on. In that case, an adversary who can imj@ctise samples into the suspicious pool
can force up ta iterations of the learning process.

5.3 Attack Application to Spam

The correlated outlier attack described in Section 4.35s applicable to Bayesian spam fil-
ters, though the specific analysis is dependent on the expitientation. There is already
an attack seen in the wild where a spam email includes a tiolteaf semi-random words or
phrases to deflate the calculated probability that the @mslam [6]° To perform the corre-
lated outlier attack on a spam filter, the adversary wouldassgpurious features words that
tend to occur together in a fraction of non-spam emails. laadifier is trained to recognize
such an email as spam, it may suffer false positives whetiregfie email containing those
words is received. Conversely, if a classifier’s threshsliased toward not marking those
legitimate mails as spam, it may suffer from false negatwhen receiving spam with the
chosen features.

As in the worm case, it may be possible for a spam author tosgwbsat words occur
in the correct frequency in the innocuous training dataeéirss likely that such an attack
could succeed were it tailored to an individual user, thotigiould not be a financial win
for the spam author. However, the spam author might be alikbltr the spurious features
to a broader audience, for example by selecting jargon wbiatsare likely to occur together
in the legitimate mail of a particular profession. Anothactic would be to use words that

5 Note that the Polygraph implementation of a Bayes classifieot vulnerable to this attack, because
it discards features that have a higher probability of agogrin negative samples than positive
samples.

XVII

occur in a certain kind of email that occurs at the neededldatvsignificant frequency. For
example, adding words or phrases in spam emails that onelweapkct to see in a job offer
letter could result in very high-cost false positives, othia savvy user being hesitant to mark
such messages as spam for that very reason.

5.4 Recommendation for Automatic Worm Signature Generatio

Current pattern extraction insufficient Most currently proposed systems for automatically
generating worm signatures work by examining multiple sesipf a worm and extracting
the common byte patterns. This is an attractive approacAusecmonitoring points can be
deployed with relative ease at network gateways and othggieggtion points.

Unfortunately, most previous approaches [7, 8, 21, 24] ddhaadle the case where the
worm varies its payload by encrypting its code and using dlsnaadomly obfuscated de-
cryption routine. In this paper, we have shown that the omgppsed systems that handle
this case of polymorphism [9, 15] can be defeated by a wormsihaply includes spurious
features in its infection attempts.

We believe that if there is to be any hope of generating sigeatautomatically by only
examining the byte sequences in infection attempt paylaad®re formal approach will be
needed. Interestingly, while there has been some reseaatble iarea of spam email classi-
fication in the scenario where an adversggctsto the current classifier in order to evade
it [6, 13], there has been little research in the machineniegrscenario where an adversary
constructs positive samples in such a way as to prevent amateclassifier from being gen-
erated in the first place. One approach that bears furthesiigation is Winnow [11, 12],
a machine learning algorithm with proven bounds on the nurobenistakes made before
generating an accurate classifier.

Automatic Semantic AnalysisRecent research proposes automatechanticanalysis of
collected worm samples, by monitoring the execution of aetdble server as it becomes
compromised [2, 3, 5]. These approaches can identify wreeltufes of the worm request
causedt to exploit the monitored software, and are hence likelpéonvariant, and useful
in a signature. This approach is also less susceptible mmliedled by the worm into using
spurious features in a signature, since it will ignore fezduthat have no effect on whether
the vulnerable software actually gets exploited. The festgo identified can also be more
expressive than the simple presence or absence of takgnghey may specify the minimum
length of a protocol field necessary to trigger a buffer oeerfl

While monitoring points employing semantic analysis areasoeasily deployed as those
that do not, since they must run the vulnerable software, &he more likely to produce sig-
natures with low false positives and false negatives thaselproduced by pattern extraction
alone.

Given the state of current research, we believe that fuegearch on automatic worm signa-
ture generation should focus on provable mistake boundsdiern-extraction-based learn-
ers and on further analysis of and improvements to autonsatientic analysis techniques.

6 Related Work

Attacking learning algorithms Barrencet al.independently and concurrently investigate the
challenge of using machine learning algorithms in advé&banvironments [1]. The authors
present a high-level framework for categorizing attackairagt machine learning algorithms
and potential defense strategies, and analyze the prepefta hypothetical outlier detection
algorithm. Our work is more concrete in that it specificalydeesses the challenge of ma-
chine learning for automatic signature generation, andiges in-depth analysis of several
practical attacks.

XIX

Perdisciet al.independently and concurrently propose attacks [18] ag#ire learning
algorithms presented in Polygraph [15]. Their work shows ha attacker able to systemati-
cally inject noise in the suspicious pool can prevent a @bekassifier from being generated,
for both conjunction and Bayes learners. Their attack agdlire Polygraph Bayes signature
generation algorithm is similar to our correlated outlitaek, though we further generalize
the attack to show both how it can be performed even withaggisious pool poisoning, and
how it can be strengthened with innocuous pool poisoning.

Pattern-extraction signature generationSeveral systems have been proposed to automati-
cally generate worm signatures from a few collected wormpasi Most of these systems,
such as Honeycomb [8], EarlyBird [21], and Autograph [7}déabeen shown not to be able to
handle polymorphic worms [15]. While PADS [24] has been shdsvbe robust to obfusca-
tion of the worm code, it is unclear whether it would work atgiencrypted code combined
with only a small obfuscated decryption routine.

Polygraph [15] demonstrates that it is possible to generatarate signatures for poly-
morphic worms, because there are some features that musebenp in worm infection
attempts to successfully exploit the target machine. Ralylyg also demonstrates automatic
signature-generation techniques that are successfuisigaaximally-varying polymorphic
worms.

Hamsa [9] is a recently proposed automatic signature géaersystem, with improve-
ments in performance and noise-tolerance over Polygraghvéidiscuss in Section 5, it is
more resilient than Polygraph to the attacks presented bet@ot entirely resilient.

Semantic analysidRecent research proposes performing autonmsgathntianalysis of col-
lected worm samples, by monitoring the execution of a vahker server as it gets compro-
mised [2,3,5,10,25]. These approaches can identify wiaaifes of the worm requesaused

it to exploit the monitored software, and are hence likelpedanvariant, and useful in a sig-
nature. This approach is also less susceptible to be foglédebworm into using spurious
features in the signature, since it will ignore feature$ tave no effect on whether the vul-
nerable software actually gets exploited. The featurestifiled can also be more expressive
than the simple presence or absence of tokens, specifyaigkings as the minimum length
of a protocol field necessary to trigger a buffer overflow.

Execution filtering In this paper we seek to address the problem of automatigalher-
ating worm signatures. Other recent research proposeg ssimantic analysis to generate
execution filterswhich specify the location of a vulnerability, and how taetd when it is
exploited by automatically emulating [20] or rewriting [It#hat part of the program.

7 Conclusion

Learning an accurate classifier from data largely contidddgan adversary is a difficult task.
In this work, we have shown that everdalusiveadversary, who provides correctly labeled
but misleading training data, can prevent or severely délaygeneration of an accurate
classifier. We have concretely demonstrated this concepthighly effective attacks against
recently proposed automatic worm signature generatiarigtgns.

When designing a system to learn in such an adversarial@maient, one must take
into account that the adversary will provide therst possibldraining data, in thevorst
possibleorder. Few machine learning algorithms provide useful goes when used in
such a scenario.

The problem of a delusive adversary must be taken into a¢@othre design of malicious
classifier generation systems. Promising approachesdedesigning learning algorithms
that are robust to maliciously generated training datéitrg using malicious data samples
notgenerated by a malicious source, and performing deepegrsamaf the malicious training
data to determine the semantic significance of featuregééfoluding them in a classifier.

XX

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

19.
20.

21.

22.

23.

24.

25.

Marco Barreno, Blaine Nelson, Russell Sears, AnthonyoBegh, and J. D. Tygar. Can machine
learning be secure? WSIA CCSMarch 2006.

. David Brumley, James Newsome, Dawn Song, Hao Wang, ané$§voitha. Towards automatic

generation of vulnerability-based signatures|BEE Symposium on Security and Priva2906.

. Manuel Costa, Jon Crowcroft, Miguel Castro, and AntonyRoon. Vigilante: End-to-end con-

tainment of internet worms. I8OSR 2005.

. Jedidiah R. Crandall and Fred Chong. Minos: Archited¢tsmaport for software security through

control data integrity. Iinternational Symposium on Microarchitectyi@ecember 2004.

. Jedidiah R. Crandall, Zhendong Su, S. Felix Wu, and Fire@e€hong. On deriving unknown vul-

nerabilities from zero-day polymorphic and metamorphicrwexploits. In12th ACM Conference
on Computer and Communications Security (C8P5.

. Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, deepak Verma. Adversarial clas-

sification. InTenth ACM SIGKDD International Conference on Knowledgecbiery and Data
Mining (KDD), 2004.

. Hyang-Ah Kim and Brad Karp. Autograph: toward automatiistributed worm signature detec-

tion. In 13th USENIX Security Symposiugugust 2004.

. Christian Kreibich and Jon Crowcroft. Honeycomb - cragintrusion detection signatures using

honeypots. IHotNets November 2003.

. Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, andaBiChavez. Hamsa: fast signature

generation for zero-day polymorphic worms with provabkacik resilience. INEEE Symposium
on Security and PrivacyMay 2006.

Zhenkai Liang and R. Sekar. Fast and automated genendtadtack signatures: A basis for build-
ing self-protecting servers. 1t2th ACM Conference on Computer and Communications Sgcurit
(CCS) 2005.

N. Littlestone. Learning quickly when irrelevant ditries abound: A new linear threshold algo-
rithm. Machine Learning2(285-318), 1988.

N. Littlestone. Redundant noisy attributes, attribeteors, and linear-threshold learning using
winnow. InFourth Annual Workshop on Computational Learning Thepages 147-156, 1991.
Daniel Lowd and Christopher Meek. Adversarial learnithg Eleventh ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data MininB X, 2005.

James Newsome, David Brumley, and Dawn Song. Vulnérabpecific execution filtering for
exploit prevention on commodity software. 18th Symposium on Network and Distributed System
Security (NDSS’06006.

James Newsome, Brad Karp, and Dawn Song. Polygraphnfatically generating signatures for
polymorphic worms. IHEEE Symposium on Security and Privatbay 2005.

James Newsome and Dawn Song. Dynamic taint analysisifomatic detection, analysis, and
signature generation of exploits on commodity softwareldth Annual Network and Distributed
System Security Symposium (ND$8pruary 2005.

delusive (definition). 1©xford English DictionaryOxford University Press, 2006.

. Roberto Perdisci, David Dagon, Wenke Lee, Prahlad FagihMonirul Sharif. Misleading worm

signature generators using deliberate noise injectiolElE Symposium on Security and Privacy
May 2006.

Yann Ramin. ATPhttpd. http://www.redshift.conyramin/atp/atphttpd/.

Stelios Sidiroglou, Michael E. Locasto, Stephen W. Bardl Angelos D. Keromytis. Building a
reactive immune system for software servicesUBENIX Annual Technical Conferen@905.
Sumeet Singh, Cristian Estan, George Varghese, arahS$efrage. Automated worm fingerprint-
ing. In 6th ACM/USENIX Symposium on Operating System Design anlérmeptation (OSD])
December 2004.

S. Staniford, D. Moore, V. Paxson, and N. Weaver. The paed of flash worms. IACM CCS
WORM 2004.

G. Edward Suh, Jaewook Lee, and Srinivas Devadas. Spamgem execution via dynamic in-
formation flow tracking. IPASPLOS$2004.

Yong Tang and Shigang Chen. Defending against interaghas A signature-based approach. In
IEEE INFOCOM March 2005.

Jun Xu, Peng Ning, Chongkyung Kil, Yan Zhai, and Chris IBait. Automatic diagnosis and
response to memory corruption vulnerabilities 1Bth Annual ACM Conference on Computer and
Communication Security (CCS005.

