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The effects of social influence and homophily suggest that both network structure and node attribute infor-
mation should inform the tasks of link prediction and node attribute inference. Recently, Yin et al. [Yin et al.
2010a; 2010b] proposed an attribute-augmented social network model, which we call as Social-Attribute Net-
work (SAN), to integrate network structure and node attributes to perform both link prediction and attribute
inference. They focused on generalizing the random walk with restart algorithm to the SAN framework and
showed improved performance. In this paper, we extend the SAN framework with several leading super-
vised and unsupervised link prediction algorithms and demonstrate performance improvement for each
algorithm on both link prediction and attribute inference. Moreover, we make the novel observation that
attribute inference can help inform link prediction, i.e., link prediction accuracy is further improved by
first inferring missing attributes. We comprehensively evaluate these algorithms and compare them with
other existing algorithms using a novel, large-scale Google+ dataset, which we make publicly available
(http://www.cs.berkeley.edu/~stevgong/gplus.html).
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1. INTRODUCTION
Online social networks (e.g., Facebook, Google+) have become increasingly important
resources for interacting with people, processing information and diffusing social in-
fluence. Understanding and modeling the mechanisms by which these networks evolve
are therefore fundamental issues and active areas of research.

The classical link prediction problem [Liben-Nowell and Kleinberg 2003; Gong et al.
2012a] has attracted particular interest. In this setting, we are given a snapshot of a
social network at time t and aim to predict links (e.g., friendships) that will emerge in
the network between t and a later time t′. Alternatively, we can imagine the setting in
which some links existed at time t but are missing at t′. In online social networks, a
change in privacy settings often leads to missing links, e.g., a user on Google+ might
decide to hide her family circle between time t and t′. The missing link problem has
important ramifications as missing links can alter estimates of network-level statis-
tics [Kossinets 2006], and the ability to infer these missing links raises serious privacy
concerns for social networks. Since the same algorithms can be used to predict new
links and missing links, we refer to these problems jointly as link prediction.

Another problem of increasing interest revolves around node attributes [Zheleva
and Getoor 2009; Gong et al. 2012a]. Many real-world networks contain rich cate-
gorical node attributes, e.g., users in Google+ have profiles with attributes including
employer, school, occupation and places lived. In the attribute inference problem, we
aim to populate attribute information for network nodes with missing or incomplete
attribute data. This scenario often arises in practice when users in online social net-
works set their profiles to be publicly invisible or create an account without providing
any attribute information. The growing interest in this problem is highlighted by the
privacy implications associated with attribute inference as well as the importance of
attribute information for applications including people search [peo a; b], collaborative
filtering [Melville and Sindhwani 2010] and user identity resolution [Bartunov et al.
2012].

In this work, we simultaneously use network structure and node attribute infor-
mation to improve performance of both the link prediction and the attribute infer-
ence problems, motivated by the observed interaction and homophily between net-
work structure and node attributes. The principle of social influence [Fond and Neville
2011], which states that users who are linked are likely to adopt similar attributes,
suggests that network structure should inform attribute inference. Other evidence of
interaction [Kumar et al. 2004; Kim and Leskovec 2011] shows that users with similar
attributes, or in some cases antithetical attributes, are likely to link to one another,
motivating the use of attribute information for link prediction. Additionally, previous
studies [Kossinets and Watts 2006; Fond and Neville 2011] have empirically demon-
strated those effects on real-world social networks, providing further support for con-
sidering both network structure and node attribute information when predicting links
or inferring attributes.

However, the algorithmic question of how to simultaneously incorporate these two
sources of information remains largely unanswered. The relational learning [Taskar
et al. 2003; Miller et al. 2009; Yu et al. 2006; Singh and Gordon 2008], matrix factor-
ization and alignment [Menon and Elkan 2011; Scripps et al. 2009] based approaches
have been proposed to leverage attribute information for link prediction, but they suf-
fer from scalability issues. More recently, Backstrom and Leskovec [Backstrom and
Leskovec 2011] presented a Supervised Random Walk (SRW) algorithm for link pre-
diction that combines network structure and edge attribute information, but this ap-
proach does not fully leverage node attribute information as it only incorporates node
information for neighboring nodes. For instance, SRW cannot take advantage of the
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Fig. 1: Illustration of a Social-Attribute Network (SAN). The link prediction problem
reduces to predicting social links while the attribute inference problem involves pre-
dicting attribute links.

common node attribute San Francisco of u2 and u5 in Fig. 1 since there is no edge
between them.

Yin et al. [Yin et al. 2010b; 2010a] proposed the use of Social-Attribute Network
(SAN) to gracefully integrate network structure and node attributes in a scalable way.
They focused on generalizing Random Walk with Restart (RWwR) algorithm to the
SAN model to predict links as well as infer node attributes. In this paper, we generalize
several leading supervised and unsupervised link prediction algorithms [Liben-Nowell
and Kleinberg 2003; Hasan et al. 2006] to the SAN model to both predict links and
infer missing attributes. We evaluate these algorithms on a novel, large-scale Google+
dataset, and demonstrate performance improvement for each of them. Moreover, we
make the novel observation that inferring attributes could help predict links, i.e., link
prediction accuracy is further improved by first inferring missing node attributes.

2. PROBLEM DEFINITION
In our problem setting, we use an undirected1 graph G = (V,E) to represent a social
network, where edges in E represent interactions between the N = |V | nodes in V . In
addition to network structure, we have categorical attributes for nodes. For instance,
in the Google+ social network, nodes are users, edges represent friendship (or some
other relationship) between users, and node attributes are derived from user profile
information and include fields such as employer, school, and hometown. In this work
we restrict our focus to categorical variables, though in principle other types of vari-
ables, e.g., live chats, email messages, real-valued variables, etc., could be clustered
into categorical variables via vector quantization, or directly discretized to categorical
variables.

We use a binary representation for each categorical attribute. For example, various
employers (e.g., Google, Intel and Yahoo) and various schools (e.g., Berkeley, Stanford
and Yale) are each treated as separate binary attributes. Hence, for a specific social
network, the number of distinct attributes M is finite (though M could be large). At-
tributes of a node u are then represented as a M -dimensional trinary column vector
~au with the ith entry equal to 1 when u has the ith attribute (positive attribute), −1
when u does not have it (negative attribute) and 0 when it is unknown whether or not
u has it (missing attribute). We denote by A = [~a1 ~a2 · · · ~aN ] the attribute matrix for

1Our model and algorithms can also be generalized to directed graphs.
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all nodes. Note that certain attributes (e.g. Female and Male, age of 20 and 30) are
mutually exclusive. Let L be the set of all pairs of mutually exclusive attributes. This
set constrains the attribute matrix A so that no column contains a 1 for two mutually
exclusive attributes.

We define the link prediction problem as follows:

Definition 2.1 (Link Prediction Problem). Let Ti = (Gi, Ai, Li) and Tj = (Gj , Aj , Lj)
be snapshots of a social network at times i and j. Then the link prediction problem
involves using Ti to predict the social network structure Gj . When i < j, new links are
predicted. When i > j, missing links are predicted.

In this paper, we work with three snapshots of the Google+ network crawled at three
successive times, denoted T1 = (G1, A1, L1), T2 = (G2, A2, L2) and T3 = (G3, A3, L3). To
predict new links, we use various algorithms to solve the link prediction problem with
i = 2 and j = 3 and first learn any required hyperparameters by performing grid search
on the link prediction problem with i = 1 and j = 2. Similarly, to predict missing links,
we solve the link prediction problem with i = 2 and j = 1 and learn hyperparameters
via grid search with i = 3 and j = 2.

For any given snapshot, several entries of A will be zero, corresponding to missing
attributes. The attribute inference problem, which involves only a single snapshot of
the network, is defined as follows:

Definition 2.2 (Attribute Inference Problem). Let T = (G,A,L) be a snapshot of a
social network. Then the attribute inference problem is to infer whether each zero
entry of A corresponds to a positive or negative attribute, subject to the constraints
listed in L.

Our goal is to design scalable algorithms leveraging both network structure and rich
node attributes to address these problems for real-world large-scale networks.

3. MODEL AND ALGORITHMS
3.1. Social-Attribute Network Model
Social-Attribute Network was first proposed by Yin et al. [Yin et al. 2010a; 2010b]2 to
predict links and infer attributes. However, their original model didn’t consider nega-
tive and mutually exclusive attributes. In this section, we review this model and extend
it to incorporate negative and mutex attributes.

Given a social network G with M distinct categorical attributes, an attribute ma-
trix A and mutex attributes set L, we create an augmented network by adding M
additional nodes to G, with each additional node corresponding to an attribute. For
each node u in G with positive or negative attribute a, we create an undirected link
between u and a in the augmented network. For each mutually exclusive attribute
pair (a, b), we create an undirected link between a and b. This augmented network is
called the Social-Attribute Network (SAN) since it includes the original social network
interactions, relations between nodes and their attributes and mutex links between
attributes.

Nodes in the SAN model corresponding to nodes in G are called social nodes, and
nodes representing attributes are called attribute nodes. Links between social nodes
are called social links, and links between social nodes and attribute nodes are called
attribute links. Attribute link (u, a) is a positive attribute link if a is a positive at-
tribute of node u, and it is a negative attribute link otherwise. Links between mutually
exclusive attribute nodes are called mutex links. Intuitively, the SAN model explicitly

2Note that they name this model as Augmented Graph. We call it as Social-Attribute Network because it’s more meaningful.
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describes the sharing of attributes across social nodes as well as the mutual exclusion
between attributes, as illustrated in the sample SAN model of Fig. 1. Moreover, with
the SAN model, the link prediction problem reduces to predicting social links and the
attribute inference problem involves predicting attribute links.

We also place weights on the various nodes and edges in the SAN model. These social
node weights could describe the individual tendencies (e.g., user activeness) of issuing
social links and the attribute node weights could be used to balance the influence of
social nodes versus attribute nodes. Furthermore, the edge weights of social links could
describe their tie strengths and the attribute link weights could balance the influence
of social links versus attribute links. We use w(u) and w(u, v) to denote the weight
of node u and the weight of link (u, v), respectively. Additionally, for a given social or
attribute node u in the SAN model, we denote by Γ+(u) and Γs+(u) respectively the set
of all neighbors and the set of social neighbors connected to u via social links or positive
attribute links. We define Γ−(u) and Γs−(u) in a similar fashion. This terminology will
prove useful when we describe our generalization of leading link prediction algorithms
to the SAN model in the next section.

The fact that no social node can be linked to multiple mutex attributes is encoded in
the mutex property, i.e., there is no triangle consisting of a mutex link and two positive
attribute links in any social-attribute network, which enforces a set of constraints for
all attribute inference algorithms.

In this work, we focus primarily on node attributes. However, we note that the SAN
model can be naturally extended to incorporate edge attributes. Indeed, we can use
a function (e.g., the logistic function) to map a given set of attributes for each edge
(e.g., edge age) into the real-valued edge weights of the SAN model. The attributes-to-
weight mapping function can be learned using an approach similar to the one proposed
by Backstrom and Leskovec [Backstrom and Leskovec 2011].

3.2. Algorithms
Link prediction algorithms typically compute a probabilistic score for each candidate
link and subsequently rank these scores and choose the largest ones (up to some
threshold) as putative new or missing links. In the following, we extend both unsuper-
vised and supervised algorithms to the SAN model. Furthermore, we note that when
predicting attribute links, the SAN model features a post-processing step whereby we
change the lowest ranked putative positive links violating the mutex property to neg-
ative links. Table I summarizes the various link prediction and attribute inference
algorithms as well as their references.

3.2.1. Unsupervised Link and Attribute Inference. Liben-Nowell and Kleinberg [Liben-
Nowell and Kleinberg 2003] provide a comprehensive survey of unsupervised link pre-
diction algorithms for social networks. These algorithms can be roughly divided into
two categories: local-neighborhood-based algorithms and global-structure-based algo-
rithms. In principle, all of the algorithms discussed in [Liben-Nowell and Kleinberg
2003] can be generalized for the SAN model. In this work we focus on representative
algorithms from both categories and we describe below how to generalize them to the
SAN model to predict both social links and attribute links. We add the suffix ‘-SAN’ to
each algorithm name to indicate its generalization to the SAN model. In our presenta-
tion of the unsupervised algorithms, we only consider positive attribute links, though
many of these algorithms can be extended to signed networks [Symeonidis et al. 2010].

Common Neighbor (CN-SAN) is a local algorithm that computes a score for a
candidate social or attribute link (u, v) as the sum of weights of u and v’s common
neighbors, i.e. score(u, v) =

∑
t∈Γ+(u)∩Γ+(v) w(t). Conventional CN only considers
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Table I: Summary of various (a) link prediction, (b) attribute inference and (c) iterative
link and attribute inference algorithms.

(a) Link prediction

Algorithm References
Unsupervised

Common Neighbor (CN) [Liben-Nowell and Kleinberg 2003]
Common Neighbor (CN-SAN) us

Adamic-Adar (AA) [Adamic and Adar 2003],
[Liben-Nowell and Kleinberg 2003]

Adamic-Adar (AA-SAN) us
Low-rank Approximation (LRA) [Liben-Nowell and Kleinberg 2003]

Low-rank Approximation (LRA-SAN) us
CN + Low-rank Approximation (CN+LRA) [Liben-Nowell and Kleinberg 2003]

CN + Low-rank Approximation (CN+LRA-SAN) us
AA + Low-rank Approximation (AA+LRA) us

AA + Low-rank Approximation (AA+LRA-SAN) us

Random Walk with Restart (RWwR) [Brin and Page 1998]
[Pan et al. 2003]

Random Walk with Restart (RWwR-SAN) [Yin et al. 2010b]
Supervised

SLP-I [Hasan et al. 2006],
[Lichtenwalter et al. 2010]

SLP-II [Hasan et al. 2006]
SLP-SAN-III/SLP-SAN-VI us

(b) Attribute inference

Algorithm References
Unsupervised

Common Neighbor (CN-SAN) us
Adamic-Adar (AA-SAN) us

Low-rank Approximation (LRA-SAN) us
CN + Low-rank Approximation (CN+LRA-SAN) us
AA + Low-rank Approximation (AA+LRA-SAN) us

Random Walk with Restart (RWwR-SAN) [Yin et al. 2010b]
Supervised

Supervised Attribute Inference (SAI-SAN) us

(c) Iterative link and attribute inference

Algorithm References
Iterative Link and Attribute Inference us

common social neighbors.

Adamic-Adar (AA-SAN) is also a local algorithm. For a candidate social link (u, v)
the AA-SAN score is

score(u, v) =
∑

t∈Γ+(u)∩Γ+(v)

w(t)

log |Γs+(t)|
.
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Conventional AA, initially proposed in [Adamic and Adar 2003] to predict friendships
on the web and subsequently adapted by [Liben-Nowell and Kleinberg 2003] to predict
links in social networks, only considers common social neighbors. AA-SAN weights the
importance of a common neighbor proportional to the inverse of the log of social degree.
Intuitively, we want to downweight the importance of neighbors that are either i) social
nodes that are social hubs or ii) attribute nodes corresponding to attributes that are
widespread across social nodes. Since in both cases this weight depends on the social
degree of a neighbor, the AA-SAN weight is derived based on social degree, rather than
total degree.

In contrast, for a candidate attribute link (u, a), the attribute degree of a common
neighbor does influence the importance of the neighbor. For instance, consider two
social nodes with the same social degree that are both common neighbors of nodes
u and a. If the first of these social nodes has only two attribute neighbors while the
second has 1000 attribute neighbors, the importance of the former social node should
be greater with respect to the candidate attribute link. Thus, AA-SAN computes the
score for candidate attribute link (u, a) as

score(u, a) =
∑

t∈Γs+(u)∩Γs+(a)

w(t)

log |Γ+(t)|
.

Low-rank Approximation (LRA-SAN) takes advantage of global structure, in
contrast to CN-SAN and AA-SAN. Denote XS as the N ×N weighted social adjacency
matrix where the (u, v)th entry of XS is w(u, v) if (u, v) is a social link and zero
otherwise. Similarly, let XA be the N ×M weighted attribute adjacency matrix where
the (u, a)th entry of XA is w(u, a) if (u, a) is a positive attribute link and zero otherwise.
We then obtain the weighted adjacency matrix X for the SAN model by concatenating
XS and XA, i.e., X = [XS XA]. The LRA-SAN method assumes that a small number of
latent factors (approximately) describe the social and attribute link strengths within
X and attempts to extract these factors via low-rank approximation of X, denoted by
X̂. The LRA-SAN score for a candidate social or attribute link (u, t) is then simply
X̂ut, or the (u, t)th entry of X̂. LRA-SAN can be computed efficiently via truncated
Singular Value Decomposition (SVD).

CN + Low-rank Approximation (CN+LRA-SAN) is a mixture of local and global
methods, as it first performs CN-SAN using a SAN model and then performs low-rank
approximation on the resulting score matrix. After performing CN-SAN, let SS be the
resulting N ×N score matrix for all social node pairs and SA be the resulting N ×M
score matrix for all social-attribute node pairs. By virtue of the CN-SAN algorithm,
note that SS includes attribute information and SA includes social interactions.
CN+LRA-SAN then predicts social links by computing a low-rank approximation of
SS denoted ŜS , and each entry of ŜS is the predicted social link score. Similarly, ŜA is
a low-rank approximation of SA, and each entry of ŜA is the predicted score for the
corresponding attribute link.3

AA + low-rank Approximation(AA+LRA-SAN) is identical to CN+LRA-SAN but
with the score matrices SS and SA generated via the AA-SAN algorithm.

Random Walk with Restart (RWwR-SAN) [Yin et al. 2010b] is a global algorithm.
In the SAN model, a Random Walk with Restart [Brin and Page 1998; Pan et al.

3An alternative method for combining CN-SAN and LRA-SAN under the SAN model that was not explored in this work
involves defining S = [SS SA], approximating S with Ŝ and using the (u, t)th entry of Ŝ as a score for link (u, t).
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2003] starting from u recursively walks to one of its neighbors t with probability
proportional to the link weight w(u, t) and returns to u with a fixed restart probability
α. The probability Pu,v is the stationary probability of node v in a random walk with
restart initiated at u. In general, Pu,v 6= Pv,u. For a candidate social link (u, v), we
compute Pu,v and Pv,u and let score(u, v) = (Pu,v + Pv,u)/2. Note that RWwR for
link prediction in previous work [Liben-Nowell and Kleinberg 2003] computes these
stationary probabilities based only on the social network. For a candidate attribute
link (u, a), RWwR-SAN only computes Pu,a, and Pu,a is taken as the score of (u, a).

We finally note that for predicting social links, if we set the weights of all attribute
nodes and all attribute links to zero and we set the weights of all social nodes and
social links to one, then all the algorithms described above reduce to their standard
forms described in [Liben-Nowell and Kleinberg 2003].4 In other words, we recover the
link prediction algorithms on pure social networks.

3.2.2. Supervised Link and Attribute Inference. Link prediction can be cast as a binary
classification problem, in which we first construct features for links, and then use a
classifier such as SVMs or Logistic Regression. In contrast to unsupervised attribute
inference, negative attribute links are needed in supervised attribute inference.

Supervised Link Prediction (SLP-SAN) For each link in our training set, we
can extract a set of topological features F (e.g. CN, AA, etc.) computed from pure
social networks and the similar features F SAN computed from the corresponding
social-attribute networks. We explored 4 feature combinations: i) SLP-I uses only
topological features F computed from social networks; ii) SLP-II uses topological
features F as well as an aggregate feature, i.e., the number of common attributes of
the two endpoints of a link; iii) SLP-SAN-III uses topological features F SAN ; and iv)
SLP-SAN-VI uses topological features F and F SAN . SLP-SAN-III and SLP-SAN-VI
contain the substring ‘SAN’ because they use features extracted from the SAN model.
SLP-I and SLP-II are widely used in previous work [Hasan et al. 2006; Lichtenwalter
et al. 2010].

Supervised Attribute Inference (SAI-SAN) Recall that attribute inference is
transformed to attribute link prediction with the SAN model. We can extract a set
of topological features for each positive and negative attribute link. Moreover, the pos-
itive attribute links are taken as positive examples while the negative attribute links
are taken as negative examples. Hence, we can train a binary classifier for attribute
links and then apply it to infer the missing attribute links.

3.2.3. Iterative Link and Attribute Inference. In many real-world networks, most node at-
tributes are missing. Fig. 2 shows the fraction of users as a function of the number of
node attributes in Google+ social network. From this figure, we see that roughly 70%
of users have no observed node attributes. Hence, we will also investigate an iterative
variant of the SAN model. We first infer the top attributes for users without any ob-
served attributes. We then update the SAN model to include these predicted attributes
and perform link prediction on the updated SAN model. This process can be performed
for several iterations.

3.2.4. Scalability. The local unsupervised algorithms CN-SAN and AA-SAN only con-
cern about the hop-2 neighborhoods, and thus are scalable. The low-rank approxi-

4For LRA-SAN this implies that XA is an N ×M matrix of zeros, so the truncated SVD of X is equivalent to that of XS

except for M zeros appended to the right singular vectors of XS .
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Fig. 2: The fraction of users as a function of the number of node attributes in the
Google+ social network.

mation based unsupervised algorithms (i.e., LRA-SAN, CN+LRA-SAN and AA+LRA-
SAN) can be computed via truncated Singular Value Decomposition (SVD), which was
shown to be scalable [Talwalkar et al. 2008]. RWwR-SAN is based on a random walk
with restart, which was also shown to be scalable [Tong et al. 2006]. Moreover, there
are many papers/libraries making classifiers (e.g., SVM in our experiments.) scalable.
For instance, Joachims [Joachims 1999] and LIBLINEAR5.

4. GOOGLE+ DATA
Google launched its new social network service named Google+ in early July 2011.
We crawled three snapshots of the Google+ social network and their users’ profiles
on July 19, August 6 and September 19 in 2011. They are denoted as JUL, AUG and
SEP, respectively. We then pre-processed the data before conducting link prediction
and attribute inference experiments.

Preprocessing Social Networks In Google+, users divide their social connections
into circles, such as a family circle and a friends circle. If user u is in v’s circle, then
there is a directed edge (v, u) in the graph, and thus the Google+ dataset is a directed
social graph. We converted this dataset into an undirected graph by only retaining
edges (u, v) if both directed edges (u, v) and (v, u) exist in the original graph. We chose
to adopt this filtering step for two reasons: (1) Bidirectional edges represent mutual
friendships and hence represent a stronger type of relationship that is more likely to
be useful when inferring users’ attributes from their friends’ attributes (2) We reduce
the influence of spammers who add people into their circles without those people
adding them back. Spammers introduce fictitious directional edges into the social
graph that adversely influence the performance of link prediction algorithms.

Collecting Attribute Vocabulary Google+ profiles include short entries about
users such as Occupation, Employment, Education, Places Lived, and Gender, etc.
We use Employment and Education to construct a vocabulary of attributes in this
paper because previous work [Gong et al. 2012b] showed that these two attribute

5http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Table II: Statistics of social-attribute networks.

#soci links #all soci links #soci nodes #pos attri links #attri nodes
JUL4 7062 7062

5200 24690 9539AUG4 7430 7813
SEP4 7422 8100
JUL2 287906 287906

170002 442208 47944AUG2 328761 339059
SEP2 332398 354572

types are most powerful for forming links between people. We treat each distinct
employer or school entity as a distinct attribute. Google+ has predefined employer
and school entities, although users can still fill in their own defined entities. Due to
users’ changing privacy settings, some profiles in JUL are not found in AUG and SEP,
so we use JUL to construct our attribute vocabulary. Specifically, from the profiles in
JUL, we list all attributes and compute frequency of appearance for each attribute.
Our attribute vocabulary is constructed by keeping attributes with frequency of at
least 3.

Constructing Social-Attribute Networks In order to demonstrate that the SAN
model leverages node attributes well, we derived social-attribute networks in which
each node has some positive attributes from the above Google+ social networks and
attribute vocabulary. Specifically, for an attribute-frequency threshold k, we chose the
largest connected social network from JUL such that each node has at least k distinct
positive attributes. We also found the corresponding social networks consisting of these
nodes in snapshots AUG and SEP. Social-attribute networks were then constructed
with the chosen social networks and the attributes of the nodes. Specifically, we chose
k = {2, 4} to construct 6 social-attribute networks whose statistics are shown in Ta-
ble II. Each social-attribute network is named by concatenating the snapshot name
and the attribute-frequency threshold. For example, ‘JUL4’ is the social-attribute net-
work constructed using JUL and k = 4. These names are indicated in the first column
of the table.

In the crawled raw networks, some social links in JULi are missing in AUGi and
SEPi, where i = 2, 4. These links are missing due to one of two events occurring be-
tween the JUL and AUG or SEP snapshots: 1) users block other users, or 2) users set
(part of) their circles to be publicly invisible after which point they cannot be publicly
crawled. These missed links provide ground truth labels for our experiments of predict-
ing missing links. However, these missing links can alter estimates of network-level
statistics, and can have unexpected influences on link prediction algorithms [Kossinets
2006]. Moreover, it is likely in practice that companies like Facebook and Google keep
records of these missing links, and so it is reasonable to add these links back to AUGi
and SEPi for our link prediction experiments. The third column in Table II is the num-
ber of all social links after filling the missing links into AUGi and SEPi. The second
column #soci links is used for experiments of predicting missing links, and column #all
soci links is used for the experiments of predicting new links.

From these two columns, the number of new links or missing links can be easily
computed. For example, if we use AUG2 as training data and SEP2 as testing data for
link prediction, the number of new links is 354572−339059 = 15513, which is computed
with entries in column #all soci links. If we use AUG2 as training data and JUL2
as testing data in predicting missing links, the number of missing links is 339059 −
328761 = 10298, which is computed with corresponding entries in column #soci links
and #all soci links.
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5. EXPERIMENTS
5.1. Experimental Setup
In our experiments, the main metric used is AUC, Area Under the Receiver Operating
Characteristic (ROC) Curve, which is widely used in the machine learning and social
network communities [Clauset et al. 2008; Backstrom and Leskovec 2011]. AUC is
computed in the manner described in [Hand and Till 2001], in which both positive and
negative examples are required. In principle, we could use new links or missing links
as positive examples and all non-existing links as negative examples. However, large-
scale social networks tend to be very sparse, e.g., the average degree is 4.17 in SEP2,
and, as a result, the number of non-existing links can be enormous, e.g., SEP2 has
around 2.9×1010 non-existing links. Hence, computing AUC using all non-existing links
in large-scale networks is typically computationally infeasible. Moreover, the majority
of new links in typical online social networks close triangles [Leskovec et al. 2008;
Backstrom and Leskovec 2011], i.e., are hop-2 links. For instance, we find that 58% of
the newly added links in Google+ are hop-2 links. We thus evaluate our large network
experiments using hop-2 link data as in [Backstrom and Leskovec 2011], i.e., new or
missing hop-2 links are treated as positive examples and non-existing hop-2 links are
treated as negative examples.

In a social-attribute network, there are two categories of hop-2 links: 1) those with
two endpoints sharing at least one common social node, and 2) those with two end-
points sharing only common attribute nodes. Local algorithms applied to the original
social network are unable to predict hop-2 links in the second category. Thus, we eval-
uate only with respect to hop-2 links in the first category, so as not to give unfair ad-
vantage to algorithms running on the social-attribute network. To better understand
whether the AUC performance computed on hop-2 links can be generalized to per-
formance on any-hop links, we additionally compute AUC using any-hop links on the
smaller Google+ networks.

In general, different nodes and links can have different weights in social-attribute
networks, representing their relative importance in the network. In all of our experi-
ments in this paper, we set all weights to be one and leave it for future work to learn
weights.

We compare our link prediction algorithms with Supervised Random Walk
(SRW) [Backstrom and Leskovec 2011], which leverages edge attributes, by transform-
ing node attributes to edge attributes. Specifically, we compute the number of common
attributes of the two endpoints of each existing link. As in [Backstrom and Leskovec
2011], we also use the number of common neighbors as an edge attribute. We adopt
the Wilcoxon-Mann-Whitney (WMW) loss function and logistic edge strength function
in our implementations as recommended in [Backstrom and Leskovec 2011].

We compare our attribute inference algorithms with two algorithms, BASELINE and
LINK, introduced by Zheleva and Getoor [Zheleva and Getoor 2009]. Using only node
attributes, BASELINE first computes a marginal attribute distribution and then uses
an attribute’s probability as its score. LINK trains a classifier for each attribute by
flattening nodes as the rows of the adjacency matrix of the social networks.6 Zheleva
and Getoor [Zheleva and Getoor 2009] found that LINK is the best algorithm when
group memberships are not available.

We use SVM as our classifier in all supervised algorithms. For link prediction, we ex-
tract six topological features (CN-SAN, AA-SAN, LRA-SAN, CN+LRA-SAN, AA+LRA-
SAN and RWwR-SAN) from both pure social networks and social-attribute networks.

6The original LINK algorithm [Zheleva and Getoor 2009] trained a distinct classifier for each attribute type. In our setting,
an attribute type (e.g., Education) can have multiple values, so we train a classifier for each binary attribute value.
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Hence, SLP-I, SLP-II, SLP-SAN-III and SLP-SAN-VI use 6, 7, 6 and 12 features, re-
spectively. For attribute inference, we extract 9 topological features for each attribute
link. We adopt two ranks (detailed in 5.2.2) for each low-rank approximation based
algorithms, thus obtaining 6 features. The other three features are CN-SAN, AA-SAN
and RWwR-SAN. To account for the highly imbalanced class distribution of examples
for supervised link prediction and attribute inference we downsample negative ex-
amples so that we have equal number of positive and negative examples (techniques
proposed in [Lichtenwalter et al. 2010; Doppa et al. 2010] could be used to further
improve the performance).

We use the pattern dataset1-dataset2 to denote a train-test or train-validation
pair, with dataset1 a training dataset and dataset2 a testing or validation dataset.
When conducting experiments to predict new links on the AUGi-SEPi train-test pair,
SRW, classifiers and hyperparameters of global algorithms, i.e., ranks in LRA-SAN,
CN+LRA-SAN, and AA+LRA-SAN and the restart probability α in RWwR-SAN, are
learned on the JULi-AUGi train-validation pair. Similarly, when predicting missing
links on train-test pair AUGi-JULi, they are learned on train-validation pair SEPi-
AUGi, where i = 2, 4.

The CN-SAN and AA-SAN algorithms are implemented in Python 2.7 while the
RWwR-SAN algorithm and Supervised Random Walk (SRW) are implemented in Mat-
lab, and all of them are run on a desktop with a 3.06 GHz Intel Core i3 and 4GB of main
memory. LRA-SAN, CN+LRA-SAN and AA+LRA-SAN algorithms are implemented in
Matlab and run on an x86-64 architecture using a single 2.60 Ghz core and 30GB of
main memory.

5.2. Experimental Results
In this section we present evaluations of the algorithms on the Google+ dataset. We
first show that incorporating attributes via the SAN model improves the performance
of both unsupervised and supervised link prediction algorithms. Then we demonstrate
that inferring attributes via link prediction algorithms within the SAN model achieves
state-of-the-art performance. Finally, we show that by combining attribute inference
and link prediction in an iterative fashion, we achieve even greater accuracy on the
link prediction task.

5.2.1. Link Prediction. To demonstrate the benefits of combining node attributes and
network structure, we run the SAN-based link prediction algorithms described in Sec-
tion 3.2 both on the original social networks and on the corresponding social-attribute
networks (recall that the SAN-based unsupervised algorithms reduce to standard
unsupervised link prediction algorithms when working solely with the original social
networks).

Predicting New Links Table III shows the AUC results of predicting new links for
each of our datasets. We are able to draw a number of conclusions from these re-
sults. First, the SAN model improves every unsupervised learning algorithm on ev-
ery dataset, save for LRA-SAN on AUG2-SEP2. The reason that LRA-SAN’s perfor-
mance decreases on AUG2-SEP2 could be that we searched the ranks in LRA-SAN up
to 3000 in the training and validation phase due to the limited computing resources
available to us7. Second, Table IIId shows that attributes also improve supervised link
prediction performance since SLP-SAN-VI, SLP-SAN-III and SLP-II outperform SLP-
I. Moreover, SLP-SAN-VI, which adopts features extracted from both social networks

7Note that LRA-SAN is scalable with more computing resources, which was shown by Talwalkar et al. [Tal-
walkar et al. 2008]
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Table III: Results for predicting new links. (a)AUC of hop-2 new links on the train-
test pair AUG4-SEP4. (b)AUC of hop-2 new links on the train-test pair AUG2-SEP2.
(c) (d) AUC of any hop new links on the train-test pair AUG4-SEP4. The numbers in
parentheses are standard deviations.

(a)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.6730 0.7315
AA-SAN 0.7109 0.7476

LRA-SAN 0.6003 0.6262
CN+LRA-SAN 0.6969 0.7671
AA+LRA-SAN 0.7118 0.7471
RWwR-SAN 0.6033 0.6143

(b)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.6936 0.7508
AA-SAN 0.7638 0.7895

LRA-SAN 0.6410 0.6385
CN+LRA-SAN 0.5642 0.6373
AA+LRA-SAN 0.6032 0.6557
RWwR-SAN 0.6788 0.6912

(c)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.7482 0.8298
AA-SAN 0.7483 0.8324

LRA-SAN 0.8075 0.8237
CN+LRA-SAN 0.7857 0.8651
AA+LRA-SAN 0.8193 0.8552
RWwR-SAN 0.9363 0.9548

(d)

Alg AUC
SLP-I 0.9128(0.0140)
SLP-II 0.9580(0.0017)

SLP-SAN-III 0.9450(0.0007)
SLP-SAN-VI 0.9706(0.0004)

SRW 0.9383
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Fig. 3: ROC curves of the CN+LRA-SAN algorithm for predicting new links. AUG4-
SEP4 is the train-test pair. JUL4-AUG4 is the train-validation pair.

and social-attribute networks, achieves the best performance, thus demonstrating the
power of the SAN model. Third, comparing RWwR-SAN in Table IIIc and SRW in
Table IIId, we observe that the SAN model is better than SRW at leveraging node
attributes since RWwR-SAN with attributes outperforms SRW. This result is not sur-
prising given that SRW is designed for edge attributes and when transforming node
attributes to edge attributes, we lose some information. For instance, as illustrated in
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Table IV: Results for predicting missing links. (a) AUC of hop-2 missing links on the
train-test pair AUG4-JUL4. (b) AUC of hop-2 missing links on the train-test pair
AUG2-JUL2. (c)-(f) AUC of any-hop missing links on the train-test pair AUG4-JUL4.
Missing links in both categories 1 and 2 are used in (c) and (e). Missing links in Cate-
gory 1 are used in (d) and (f). The numbers in parentheses are standard deviations.

(a)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.7180 0.7925
AA-SAN 0.7437 0.7697

LRA-SAN 0.6569 0.6237
CN+LRA-SAN 0.7147 0.7986
AA+LRA-SAN 0.7410 0.7668
RWwR-SAN 0.5731 0.5676

(b)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.6938 0.7309
AA-SAN 0.7633 0.7796

LRA-SAN 0.6044 0.6059
CN+LRA-SAN 0.5816 0.6266
AA+LRA-SAN 0.6212 0.6569
RWwR-SAN 0.6595 0.6706

(c)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.5460 0.7012
AA-SAN 0.5460 0.7033

LRA-SAN 0.5495 0.6177
CN+LRA-SAN 0.5547 0.7048
AA+LRA-SAN 0.5640 0.7325
RWwR-SAN 0.2000 0.7619

(d)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.7329 0.7765
AA-SAN 0.7330 0.7784

LRA-SAN 0.7316 0.7401
CN+LRA-SAN 0.7515 0.7510
AA+LRA-SAN 0.8104 0.8116
RWwR-SAN 0.7797 0.8838

(e)

Alg AUC
SLP-I 0.5453(0.0120)
SLP-II 0.6991(0.0065)

SLP-SAN-III 0.7161(0.0030)
SLP-SAN-VI 0.8481(0.0022)

(f)

Alg AUC
SLP-I 0.8023(0.0088)
SLP-II 0.8403(0.0033)

SLP-SAN-III 0.8620(0.0080)
SLP-SAN-VI 0.8854(0.0324)

Fig. 1, nodes u2 and u5 share the attribute San Francisco. When transforming node
attributes to edge attributes, this common attribute information is lost since u2 and u5

are not linked.
Fig. 3 shows the ROC curves of the CN+LRA-SAN algorithm. We see that curve of

CN+LRA-SAN with attributes dominates that of CN+LRA-SAN without attributes,
demonstrating the power of the SAN model to effectively incorporate the additional
predictive information of attributes. The results of other algorithms except LRA-SAN
are similar and thus are not shown here.

Predicting Missing Links Missing links can be divided into two categories: 1) links
whose two endpoints have some social links in the training dataset. 2) links with at
least one endpoint that has no social links in the training dataset. Category 1 corre-
sponds to the scenarios where users block users or users set a part of their friend lists
(e.g. family circles) to be private. Category 2 corresponds to the scenario in which users
hide their entire friend lists. Note that all hop-2 missing links belong to Category 1.
In addition to performing experiments to show that the SAN model improves missing
link prediction, we also perform experiments to explore which category of missing links
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is easier to predict. Table IV shows the results of predicting missing links on various
datasets. As in the new-link prediction setting, the performance of every algorithm is
improved by the SAN model, except for LRA-SAN on AUG4-JUL4 and RWwR-SAN on
AUG4-JUL4 for hop-2 missing links.

When comparing Tables IVc and IVd or Tables IVe and IVf, we conclude that the
missing links in Category 2 are harder to predict than those in Category 1. RWwR-
SAN without attributes performs poorly when predicting any-hop missing links in
both categories (as indicated by the entry with 0.2000 in Table IVc). This poor per-
formance is due to the fact that RWwR-SAN without attributes assigns zero scores for
all the missing links in Category 2 (positive examples) and positive scores for most
non-existing links (negative examples), making many negative examples rank higher
than positive examples and resulting in a very low AUC.

5.2.2. Attribute Inference. In this section, we focus on inferring attributes using the SAN
model. In our next set of experiments in Section 5.2.3, we use the results of these at-
tribute inference algorithms to further improve link prediction, and the results of this
iterative approach further validate the performance of the SAN model for attribute
inference. Since the first step of iterative approach of Section 5.2.3 involves inferring
the top attributes for each node, we employ an additional performance metric called
Pre@K in our attribute inference experiments. Compared to AUC, Pre@K better cap-
tures the quality of the top attribute predictions for each user. Specifically, for each
sampled user, the top-K predicted attributes are selected, and (unnormalized) Pre@K
is then defined as the number of positive attributes selected divided by the number
of sampled users. We address score ties in the manner described in [McSherry and
Najork 2008]. Since most Google+ users have a small number of attributes, we set
K = 2, 3, 4 in our experiments.

When evaluating algorithms for the inference of missing attributes, we require
ground truth data. In general, ground truth for node attributes is difficult to obtain
since it is often not possible to distinguish between negative and missing attributes.
However, for most users the number of attributes is quite small, and so we assume
that users with many positive attributes have no missing attributes. Hence, we evalu-
ate attribute inference on users that have at least 4 specified attributes, i.e., we work
with users in SEP4 and assume that each attribute link in SEP4 is either positive or
negative.

In our experiment, we sample 10% of the users in SEP4 uniformly at random, re-
move their attribute links from SEP4, and evaluate the accuracy with which we can
infer these users’ attributes. All removed positive attribute links are viewed as posi-
tive examples, while all the negative attribute links of the sampled users are treated as
negative examples. We run a variety of algorithms for attribute inference, and for each
algorithm we average the results over 10 random trials. As noted above, we evaluate
the performance of attribute inference using both AUC and Pre@K. Note that some
attribute nodes in SEP4 only have one positive attribute link. As a result, if these pos-
itive attribute links are sampled as test data, it’s hard to correctly infer them in the
test phase because there are no positive training examples for the corresponding at-
tribute nodes. Therefore, we further remove the attribute nodes with only one positive
attribute link and their corresponding attribute links from SEP4. Moreover, in the test
phase, we only use the users among the sampled ones that have at least K attributes
to compute the Pre@K to avoid the influence of users with too few positive attributes.

For the low-rank approximation based algorithms, i.e., LRA-SAN, CN+LRA-SAN
and AA+LRA-SAN, we report results using two different ranks, 100 and 1000, and
indicate which was used by the number following the algorithm name in Fig. 5. We
choose these two small ranks for computational reasons and also based on the fact
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Fig. 4: Impact of the restart probability on the performance of RWwR-SAN for attribute
inference on SEP4. (a) AUC under ROC curves. (b) Pre@2,3,4.
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Fig. 5: Performance of various algorithms on attribute inference on SEP4. (a) AUC
under ROC curves. (b) Pre@2,3,4.

that low-rank approximation methods assume that a small number of latent factors
(approximately) describe the social-attribute networks. Fig. 4 shows the impact of the
restart probability on the performance of RWwR-SAN. We find that α = 0.7 achieves
the best AUC and comparable Pre@K. Thus we set the restart probability α to be 0.7.

Fig. 5 shows the attribute inference results for various algorithms. Several interest-
ing observations can be made from this figure. First, under both metrics, all SAN-based
algorithms perform better than BASELINE, save LRA100-SAN and LRA1000-SAN
under Pre@2,3,4 metric, which indicates that the SAN model is good at leveraging net-
work structure to infer missing attributes. Second, we find that AUC and Pre@K pro-
vide inconsistent conclusions about relative algorithm performance. For instance, the

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.



Joint Link Prediction and Attribute Inference using a Social-Attribute Network 0:17

mean AUC values suggest that SAI-SAN beats all other algorithms. However, several
unsupervised algorithms outperform SAI-SAN with respect to Pre@2,3,4. The incon-
sistencies between the two metrics are expected since AUC is a global measurement
while Pre@K is a local one. Our SAI-SAN algorithm dominates LINK under both AUC
and Pre@2,3,4 metrics, thus demonstrating the power of mapping attribute inference
to link prediction with the SAN model.

Table V: Results for iteratively inferring attributes and predicting links. (a) on the
AUG4-SEP4 train-test pair. (b) on the AUG4-JUL4 train-test pair. Results are aver-
aged over 10 trials. The numbers in parentheses are standard deviations.

(a)

Alg w/o Attri With Attri With Inferred Attri
Random 0.5000(0) 0.5000(0) 0.5000(0)
CN-SAN 0.6730(0) 0.7174(0.0077) 0.7291(0.0063)
AA-SAN 0.7109(0) 0.7408(0.0063) 0.7440(0.0026)

LRA-SAN 0.6003(0) 0.6274(0.0052) 0.6320(0.0055)
CN+LRA-SAN 0.6969(0) 0.7497(0.0134) 0.7534(0.0084)
AA+LRA-SAN 0.7111(0) 0.7373(0.0050) 0.7442(0.0032)

(b)

Alg w/o Attri With Attri With Inferred Attri
Random 0.5000(0) 0.5000(0) 0.5000(0)
CN-SAN 0.7180(0) 0.7780(0.0173) 0.7856(0.0100)
AA-SAN 0.7437(0) 0.7626(0.0100) 0.7661(0.0045)

LRA-SAN 0.6569(0) 0.6189(0.0105) 0.6134(0.0157)
CN+LRA-SAN 0.7147(0) 0.7838(0.0256) 0.7969(0.0059)
AA+LRA-SAN 0.7410(0) 0.7591(0.0118) 0.7673(0.0051)

5.2.3. Iterative Attribute and Link Inference. Section 5.2.1 demonstrated that knowledge of
a user’s attributes can lead to significant improvements in link prediction. However, in
real-world social networks like Google+, the vast majority of user attributes are miss-
ing (see Fig. 2). To increase the realized benefits of social-attribute networks with few
attributes, we propose first inferring missing attributes for each user whose attributes
are missing and then performing link prediction on the inferred social-attribute net-
works. Recall that SAI-SAN achieves the best AUC, RWwR-SAN achieves the best
Pre@K in inferring attributes (see Fig. 5) and AA-SAN achieves comparable Pre@K
results while being more scalable. Thus, in the following experiments, we use AA-SAN
to first infer the top-K missing attributes for users, and subsequently perform link
prediction using various methods.

In our experiments, when we are working on the pair train-test, we sample 10%
of the users of train uniformly at random and remove their attributes. We then run
three variants of link prediction algorithms: i) without attributes, ii) with only the
remaining attributes, and iii) with the remaining attributes along with the inferred
attributes. The top-4 attributes are inferred for each sampled user by AA-SAN. We re-
port the results averaged over 10 trials. The hyperparameters of the global algorithms
are the same as those in (Section 5.2.1), which are learned from the corresponding
train-validation pair.
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Table Va shows the results of first inferring attributes and then predicting new links
on the AUG4-SEP4 train-test pair. Table Vb shows the results of first inferring at-
tributes and then predicting missing links on the AUG4-JUL4 train-test pair. We see
that the inferred attributes improve the performance of all algorithms except LRA-
SAN on predicting missing links. Again, the bad performance of LRA-SAN could be
explained by the fact that we searched the ranks in LRA-SAN up to 3000 in the train-
ing and validation phase due to the limited computing resources available to us. The
AUCs obtained with inferred attributes for all other algorithms are very close to those
obtained with all positive attributes as shown in Table IIIa, which further demon-
strates that AA-SAN is an effective algorithm for attribute inference.

6. RELATED WORK
A wide range of link prediction methods have been developed. For instance, models of
complex networks, such as Preferential Attachment [Barabási and Albert 1999], SAN
model [Gong et al. 2012b] and Hierarchical model [Clauset et al. 2008] can be viewed
as models for predicting links. Liben-Nowell and Kleinberg [Liben-Nowell and Klein-
berg 2003] surveyed a set of unsupervised link prediction algorithms. Li [Li et al. 2011]
proposed Maximal Entropy Random Walk (MERW). Lichtenwalter et al. [Lichtenwal-
ter et al. 2010] proposed the PropFlow algorithm which is similar to RWwR but more
localized. However, none of these approaches leverage node attribute information.

Link prediction methods leveraging attribute information first appear in the rela-
tional learning community [Taskar et al. 2003; Miller et al. 2009; Bilgic et al. 2007;
Yu et al. 2006]. However, these approaches suffer from scalability issues. For instance,
the largest network tested in [Taskar et al. 2003] has about 3K nodes. Recently, Back-
strom and Leskovec [Backstrom and Leskovec 2011] proposed the Supervised Random
Walk (SRW) algorithm to leverage edge attributes. However, SRW does not handle the
scenario in which two nodes share common attributes (e.g. nodes u2 and u5 in Fig. 1),
but no edge already exists between them. Mapping link prediction to a classification
problem [Hasan et al. 2006; Lichtenwalter et al. 2010; Doppa et al. 2010] is another
way to incorporate attributes. We have shown that classifiers using features extracted
from the SAN model perform very well. Yang et al. [Yang et al. 2011] proposed to jointly
predict links and propagate node interests (e.g., music interest). Their algorithm re-
lies on the assumption that each node interest has a set of explicit attributes. As a
result, their algorithm cannot be applied to our scenario in which it’s hard (if possible)
to extract explicit attributes for our node attributes.

Previous works in [Rao et al. 2011; Rao et al. 2010] aim at inferring node attributes
(e.g., ethnicity and political orientation) using supervised learning methods with fea-
tures extracted from user names and user-generated texts. Zheleva and Getoor [Zhel-
eva and Getoor 2009] map attribute inference to a relational classification problem.
They find that methods using group information achieve good results. These ap-
proaches are complementary to ours since they use additional information apart from
network structure and node attributes. In this paper, we transform the attribute in-
ference problem into a link prediction problem with the SAN model. Therefore, any
link prediction algorithm can be used to infer missing attributes. More importantly,
we demonstrate that attribute inference can in turn help link prediction with the SAN
model.

7. CONCLUSION AND FUTURE WORK
We comprehensively evaluate the Social-Attribute Network (SAN) model in terms of
link prediction and attribute inference. More specifically, we adapt several representa-
tive unsupervised and supervised link prediction algorithms to the SAN model to both
predict links and infer attributes. Our evaluation with a large-scale novel Google+
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network dataset demonstrates performance improvement for each of these general-
ized algorithm on both link prediction and attribute inference. Moreover, we demon-
strate a further improvement of link prediction accuracy by using the SAN model in
an iterative fashion, first to infer missing attributes and subsequently to predict links.
Interesting avenues for future research include devising an iterative algorithm that
alternates between attribute and link prediction, learning node and edge weights in
the SAN model, and incorporating edge attributes, negative node attributes and mutex
edges into large-scale experiments.
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